Rethinking the Design of OpenFlow Switch Counters

Ji Yang
Xi'an Jiaotong University

Ruilong Wang
Xi’an Jiaotong University

CCS Concepts

*Networks — Network design principles;

Keywords
OpenFlow, SDN counter

1. INTRODUCTION

Software Defined Networking (SDN) offers a flexible net-
work architecture by decoupling the control plane and data
plane. As the de facto implementation of SDN, OpenFlow
uses a flow-based control abstraction: switches forward pack-
ets based on the fine-grained flow entries installed by the
controller. Indicated in [1], the flow table related fast mem-
ory accounts for more than 70% of the chip area and 50% of
the power consumption in the data path processing silicon.

In addition, the latest OpenFlow specification 1.5.1 [5] de-
fines a bunch of counters for each port and type of tables to
track network status and enforce control functions. If all
these counters are set in the OFS processing ASIC, an extra
49.6% memory will be required, which makes implementa-
tion infeasible or extremely expensive. In most of the cases,
the counters are sarificed when competing with flow tables.

Besides the OFS fast path, i.e., OFS ASIC, a slow path
in OFS implemented by a CPU handles the infrequent coor-
dination with the controller and the configuration to the fast
path. We observe that the cache size in the up-to-date CPU
could reach 512KB-2MB and the processing load in slow
path CPU is usually light. As a result, we start rethink the

This paper is supported in part by the National Natural Science Foundation
of China (61221063, 61272459, U1301254), 863 High Tech Development
Plan (2012AA011003) 111 International Collaboration Program of China,
Program for New Century Excellent Talents in University (NCET-13-0450)
and the Fundamental Research Funds for the Central Universities.

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

SIGCOMM ’16, August 22-26, 2016, Florianopolis, Brazil
© 2016 ACM. ISBN 978-1-4503-4193-6/16/08. ..$15.00
DOLI: http://dx.doi.org/10.1145/2934872.2959062

Chengchen Hu
Xi'an Jiaotong University

Peng Zhang
Xi'an Jiaotong University

589

Peng Zheng
Xi’an Jiaotong University

Xiaohong Guan
Xi’an Jiaotong University
Tsinghua University

OFS architecture to move the counter array originally in the
fast path to the unused CPU cache in the slow path.

As the first contribution of this work, we propose CAche
CounTIng (CACTI) to fulfill the counting tasks with almost-
zero memory consumption in the fast path of OFS. Specifi-
cally, CACTI reserves only several register in the fast path.
The second contribution is real implementation of CACTI
prototype systems on two hardware platforms. One is all-
progrmmable switch (ONetSwitch [4]) and the other is a
FPGA-based PCI Express Card plugged into a x86 server.

The results on real traces demonstrated that CACTI can
process up to 39.7M packets per second or 316 Gbps through-
put with less than 0.42% relative error. The cost in the fast
path accounts for about 0.24-0.54% Look-Up Table and 0.35-
0.43% flip-flops compared with the whole OFS design. Mean-
while the counter array kept in the slow path can be greatly
compressed to fit into the size of CPU cache.

2. DESIGN

The overall architecture of CACTI is shown in Figure 1.
A counter update request from OpenFlow datapath consists
of the counter identification (Counter ID) and the value to
be updated (Updated Value), The Counter ID Register(s)
records the Counter ID of the most-recently update request,
and the Shadow Counter Register Update Logic compares
the Counter ID of the current counter update with what is
recorded by the Counter ID Register(s). If they are the same,
the updated value will be accumulated to the Shadow Counter
Register in the Shadow Counter Register Array; otherwise,
the value stored in shadow counter register will be sent to
the slow path through Direct Memory Access (DMA), and
the new update value will overwrite the previous one.

Counter

Update Array
process
Update Queue |
_SlowPath _ _ _ _ RequeSTCounterD and Valie) J— —
Fast Path Counter ID
Register(s) HW DMA
Flows In
Flow Counter | (Sigif\(::' Shadow
I— Table = N Counter
Register >)
_ Register
Packet Size Update A
B rray
Logic

Figure 1: System structure of CACTI

In the slow path, a Counter Array keeps counters for all
flow entries of the switch, and it is accommodated into the
internal cache of the switch’s CPU. The Compression mod-
ule reads update values from the fast path, and accumulate
them to the corresponding entries in the Counter Array.

The first challenge is how to compress the increment value
in order to store all the counters in CPU cache instead of an
extended memory. Let n be the flow size, and a compres-
sion method should map it into a counter value c that uses
less bits than n. Define f(c) as the estimated flow size given
a counter ¢, and the compression function is then f~1(-).
Here, we choose the compression method in DISCO [3] which
achieves an unbiased estimate f(c) = %, (b > 1). Since
there is no enough memory size to maintain floating-point
number counters, we could only rely on the integer coun-
ters. We can prove that the value stored in CACTI is an
unbiased estimate of the counter value if f(c) is an unbiased
estimate of the counter value. Note here besides DISCO,
any other SRAM-based counter compressing method could
be used for CACTI.

A second challenge is how to deal with the unmatched
processing speeds of the fast path and the slow path. For ex-
ample, when there is a burst of small packets, the fast path
may overwhelm the CPU in the slow path with a large num-
ber of counter update requests. To address this problem, we
let the slow path maintain an update queue to keep all the
counter update requests.

Optimization: In the above, we assume there is only one
shadow counter register, while we need to consider schedul-
ing strategies when there are multiple shadow counters reg-
isters. Least Recently Used (LRU) strategy updates the least
recently used shadow counter register to the slow path, ex-
pecting it keeping an inactive flow. Flush is a greedy algo-
rithm, which updates all counters in shadow counter register
array to CPU when no free shadow counter can serve the ar-
riving packet. The target of this algorithm is to optimize the
usage of local bus between the fast path and the slow path.

Since DISCO needs 15 bits to store a compressed 64bit
counter, CACTI uses the lower 15 bits in a counter to store
data and uses the highest 1 bit as the compression mark.
Only counters larger than 2'° will be compressed and marked.

3.

We prototyped CACTI with ONetSwitch, as well as a x86
platform carrying a FPGA datapath. Since ONetSwitch con-
tains an ARM processor in its slow path, we stored the counter
array at on-chip memory. For the x86 platform, we use pre-
compile command to let CPU load the counter arrays before
using. For inputs, we synthesize three traces (UNI, EXP, and
PAR) based on different statistic parameters and four real
traces (CA1-4) from CAIDA anonymous high-speed back-
bone between 2008 and 2014. During the experiment, we
use 16 shadow counters with flush strategy for CACTI. The
processing speed and throughput are given in Table 1.

We analyze the relative error of CACTI, DISCO and ICE-
buckets [2] under different trace scenarios. CACTI is always
better than DISCO, which agrees with the theorem. With dif-
ferent flow distribution, CACTI reduces the upper bound of

IMPLEMENTATION AND EVALUATE

590

Table 1: Performance of CACTI on platforms

Scenario | UNI | EXP | PAR | CAl [CA2 | CA3 | CA4
Processing Speed at x86(Mpps)

DISCO | 250 | 250 | 252 | 203 21 20 18.6
CACTI | 335 | 335 | 294 | 375 | 39.7 34 30.6
Processing Speed at ONetSwitch (Mpps)

CACTI [253 [255 | 256 | 2.60 | 2.60 | 2.59 | 2.58
Throughput at x86 (Gbps)

DISCO 157 | 60.8 92 160 170 161 175
CACTI 210 | 81.1 122 307 316 273 190
Throughput at ONetSwitch (Gbps)

CACTI [160 [155 | 17.0 | 215 [193 [202 [19.6
Update Traffic Reduce Percentage (%)

CACTI | 8 [8 | 8 | 8 [8 [82 [71

counting error by 12%. CACTI shows much better accuracy
with all traces, especially under synthetic traces which have
less small flows. The counter value is compressed when the
full size counting overflows.

The reduced traffic results are depicted in Table 1. Basi-
cally, the performance improves when the number of shadow
counters increases, but the margin decreases. Considering
the overhead of using more shadow counters, 16 shadow
counters should be enough. These results indicate that CACTI
significantly reduces the update requests between fast path
and slow path without disturbing normal messages in the
slow path such as packet-in, packet-out, and flow-mod.

4. CONCLUSION

This paper presents a new architecture named CACTI to
implement OpenFlow switch couters. The proposed CACTI
has several advantages: 1) In CACTI, the memory cost re-
lated to OFS counters is removed from the fast path to the
slow path, as a result, which can be saved for large flow ta-
bles. 2) It significantly reduces the counter update traffic
between the fast path and the slow path, and therefore pro-
vides large throughput for counting high speed network traf-
fic. 3) The accuracy of CACTI is no less than SRAM-based
counting solutions even in the worst case, and usually shows
more improvements on real traces. 4) More optional coun-
ters can be fit into OFS by using CACTI to support different
controller applications. 5) The implementation can easily be
implemented with different hardware platforms.

S. REFERENCES

[1] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese,

N. McKeown, M. Izzard, F. Mujica, and M. Horowitz.
Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN. In ACM
SIGCOMM CCR, 2013.

[2] G. Einziger, B. Fellman, and Y. Kassner. Independent
counter estimation buckets. In JEEE INFOCOM, 2015.

[3] C. Hu, B. Liu, H. Zhao, K. Chen, Y. Chen, C. Wu, and
Y. Cheng. DISCO: Memory efficient and accurate flow
statistics for network measurement. In /EEE ICDCS,
2010.

[4] C. Hu, J. Yang, H. Zhao, and J. Lu. Design of all
programmable innovation platform for software defined
networking. In Open Networking Summit, 2014.

[5S] ONF. OpenFlow Switch Specification Ver 1.5.1, 2015.

