Towards a Scalable, Flexible and High Performance NFV
Execution Model

Peng Zheng"
Xi’an Jiaotong University
University of Minnesota
pzheng@umn.edu

ABSTRACT

Scaling the software packet processing capability of Network Func-
tion Virtualization (NFV) on multi-core commodity server to meet
the high performance, e.g. 100 Gbps linespeed and beyond, is still a
challenging task. We find that two existing service function chain
(SFC) execution models often fail to scale up to the linespeed with
increasing and diverse traffic. To this end, we present a novel hy-
brid execution model with the scalability, flexibility to attain high
performance packet processing rate.

CCS CONCEPTS

« General and reference — Performance; - Networks — Net-
work performance analysis; Middle boxes / network appliances;

KEYWORDS
NFV, multi-core, execution model, scalability, hybrid

ACM Reference Format:

Peng Zheng, Arvind Narayanan, and Zhi-Li Zhang. 2019. Towards a Scal-
able, Flexible and High Performance NFV Execution Model. In The 15th
International Conference on emerging Networking EXperiments and Technolo-
gies (CoONEXT ’19 Companion), December 9-12, 2019, Orlando, FL, USA. ACM,
New York, NY, USA, 2 pages. https://doi.org/10.1145/3360468.3368181

1 INTRODUCTION

Network function virtualization (NFV) allows network operators to
run (virtualized) network functions on commodity servers instead
of dedicated hardware “middleboxes” such as firewalls, NATs and
load balancers. This not only helps reduce the capital expenditure
of carriers, but also provides them with the ability to dynamically
scale out (or in) in accordance with traffic demands. Due to the
slower software packet processing speed, scaling out via parallel
packet processing on multi-core servers has been a major solution
in design of software-based network functions [2]. Switches and
servers with 100 Gbps ports and NICs are becoming cheaper and
more commonplace. However, speeding up NFV packet processing
pipeline to nearly the 100 Gbps linespeed and beyond on multi-
core commodity servers is still a challenging task: while allocating
more cores can improve the overall system throughput, the uncore

“The work was done while Peng Zheng was a visiting Ph.D student at the UMN.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CoNEXT ’19 Companion, December 9-12, 2019, Orlando, FL, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7006-6/19/12.

https://doi.org/10.1145/3360468.3368181

Arvind Narayanan
University of Minnesota
arvind@cs.umn.edu

Zhi-Li Zhang
University of Minnesota
zhzhang@cs.umn.edu

resources such as the last-level cache (LLC), memory and I/O con-
trollers shared among the cores becomes a bottle [3, 4]. In other
words, NFV performance does not scale linearly with the number
of cores. It is important to ensure most NFs and SFC operations are
bound for the L1/L2 caches dedicated to individual cores so as to
attain the 100 Gbps linespeed or higher performance [5].

Challenges. Two key factors make it a challenge to scale up NFV
performance under multi-core server. First, most NFs are stateful
which entails operations not only on packets, but also requires
reads/writes to the NF state. The NF state competes with the packets
to be processed for the L1/L2 cache resources. This problem is
further compounded by the second factor: namely, a sequence of
NFs - forming a so-called service function chain (SFC) — must often
be performed on the packets to meet a network service policy. This
not only increases the overall NF state cache resource requirements
for SFC packet processing, but also poses the question how to
execute NFs within an SFC.

Two existing execution models are employed in the literature [5]:
the pipeline (PL) model allocates one core per NF and the packets
are passed across the cores and processed by the NFs in a pipeline;
the run-to-completion (RTC) model executes all the NFs in an SFC on
a single core. These execution models have a strong impact on the
scaling performance of SFC, due to the complicated interactions and
resource contention among the NFs in an SFC and cores allocated
to execute them. Both existing models have pros and cons and
often fail to scale up to the linespeed. RTC avoids inter-core packet
transfer penalty, but may suffer poorer cache locality and potentially
longer per-packet processing latency, especially as the number of
NFs increases. Note that we scale out SFC by allocating one core
per the entire SFC under RTC model, as shown in Fig. 1 for an
example 4-NF SFC, ACL—NM—L4LB—L3FWD, where the L4LB is the
bottleneck NF in the SFC to be scaled. In comparison, PL staggers
the per-packet processing latencies of different NFs in an SFC, but
must pay the performance penalty of inter-core transfer latency:
when switching from one core to another core, the packet being
processed must be transferred via the shared L3 cache or worst case
DRAM. In addition, due to more cores being used for processing
each instance of an SFC, the number of cores available for scaling
out is also reduced. On the other hand, PL provides better flexibility,
for example, only scaling out the bottleneck NF L4LB, as shown in
Fig. 2. This flexibility further decreases the negative interactions
(e.g. the synchronization messages to ensure state consistency)
for the L4LB’s upstream or downstream NFs instances running on
different cores. For example, the scaling of L4LB using RTC model
can introduce much more synchronization overhead to NM instances
than using PL model, as marked blue in Fig. 1.

https://doi.org/10.1145/3360468.3368181
https://doi.org/10.1145/3360468.3368181

CoNEXT ’19 Companion, December 9-12, 2019, Orlando, FL, USA

Peng Zheng, Arvind Narayanan and Zhi-Li Zhang

core 1 core 2 core 3 core 6 Core s core 1 core 2 core 4 core5.) »- RTC PP -e | w0
L3FWD| | |[L3FWD | |[L3FWD) L3FWD| iLale! m] PL - z
it i VI i = it W : i 828 Jhed ns
oo (0| e EE e e BT | & ;
...... O -
. »»(L‘Lai_'_' il EREEN S 10 ol > w0 5
[AcL || |[AcL]| |[AcL] Traffic femaas 3
ACL ACL ACL ACL Dispatcher N et L3 Cache/DRAM L3 Cache/DRAM o 50 =

L4LB! NIC

@ Traffic Dispatcher

Figure 2: Flexible scal-

Figure 1: Scaling out
ing out using PL

using RTC

2 THE HYBRID APPROACH

To circumvent the limitations of existing SFC execution models,
we present a hybrid execution model that combines the advantages
of both RTC and PL models, while mitigating their limitations. By
taking into account the NF states, the traffic affinities they induce
as well as the complexity of individual NF operations, we partition
a SFC into several sub-SFCs, where each sub-SFC is executed using
the RTC model, and the sub-SFCs are processed in a pipeline fashion.
Each sub-SFC is defined in such a manner to ensure that the the
state needed by each NF in the sub-SFC for can be maintained
in the L1/L2 caches most of the time to maximize the per-core
packet throughput. By executing the NFs in each sub-SFC in a
single core as in RTC, we minimize the inter-core transfer penalty.
By dividing an SFC into multiple sub-SFCs, we can scale each sub-
SFC independently to better account for the NF state requirements
and traffic affinities while minimizing the negative interactions and
synchronization overhead among them.

An example of Hybrid model. For the aforementioned 4-NF SFC,
Fig. 3 (a) shows a simple hybrid execution model where we divide
the SFC into two sub-SFCs: the ACL— NM sub-SFC runs in a single
core using RTC, and the L4LB—L3FWD sub-SFC runs in another
core using RTC. Each SFC instance of this hybrid model will occupy
2 CPU cores. While scaling out, each sub-SFC in the Hybrid models
can be independently scaled out to ensure flexibility. Fig. 3 (b)
presents an example where the sub-SFC L4LB —L3FWD is scaled out.
Comparing this hybrid model to the PL model, the Hybrid model
saves one inter-core transfer, thus improving the overall throughput
performance. Comparing with RTC executing the original 4-NF
SFC on each core, the state memory requirement of the sub-SFC is
smaller than that of the entire SFC (by an amount equivalent to the
total state size of NM +ACL), thereby improving the cache locality for
CPU cores due to the smaller state size; at the same time the hybrid
model reduces the synchronization overhead between NM instances
than RTC model. Next we evaluate our proposed Hybrid execution
model and compare it with existing two execution models to better
understand the scaling performance of SFC.

Preliminary Evaluation. Our testbed consists of two servers
with Intel Xeon 8168 CPU @3.4GHz, each equipped with a dual-
port Mellanox ConnectX-5 EN 100Gbps NIC. We have built a highly
efficiency customized runtime system to manage SFCs and server
resources. We implement the four NFs based on DPDK, which runs
on one server. Another server, as traffic generator, runs TRex [1] to
generate diversity workload with difference # of flows. The frame
size is fixed to 1024 bytes.

We evaluate all three execution models using the same SFC afore-
mentioned, and the same number of cores on the server under the
same settings. Specifically, using 20 cores, we run 20 SFC instances

(a) Hybrid

Figure 3: (a) An example of Hybrid
model; (b) Scaling out using Hybrid

(b) Scaling out Hybrid 10° 10t 100 T0°
State size (# of entries)

Figure 4: Scaling performance
of three models

for RTC and 5 SFC instances for PL; while for Hybrid model, we
run 10 SFC instances as depicted in Fig. 3 (a). We set the state size
(i.e. # of entries in the lookup table of each NF) from 400 to 1000k
and we steer the same number of randomly generated flows for
each instance in three models to measure the performance of dif-
ferent execution models. We use lock to ensure the correctness and
consistency of state while scaling NF instances to multiple cores.

The performance of three execution models, under different
workload, is shown in Fig. 4. Due to the space limitation, we briefly
summarize our observations. With the increase of traffic diversity
(the # of flows) and the required state size (# of entries), the Hy-
brid model shows the best scaling throughput and is significantly
higher than the RTC and PL models. The PL model has the poorest
performance due to the heavy inter-core transfer overhead. While
minimal inter-core transfer under RTC, however, the state synchro-
nization overhead becomes the bottleneck for scaling performance.
The Hybrid model is able to tweak for a sweet point between PL and
RTC by mitigating their drawbacks, thus leading to the best scaling
performance for SFC running on multi-core commodity servers. To
takeaway, through our initial evaluation and performance analysis,
we demonstrate that the proposed hybrid execution model affords
the network operators with the scalability and flexibility in dynam-
ically provisioning the resources in a multi-core server to achieve
the maximal system throughput.

3 CONCLUSION AND FUTURE WORK

Our work shows a novel hybrid execution model is promising
for NFV, and provides a first step toward building a novel NFV
execution model with high performance, scalability and flexibility.
To fully develop such a framework, much work is still needed; these
include mechanisms and algorithms for automatically profiling
NFs, optimally partitioning SFCs for the hybrid model, dynamically
distributing and balancing among (sub-)SFC instances in accordance
with changing traffic dynamics and demands.

ACKNOWLEDGMENTS

The research is supported in part by US NSF under Grants CNS-
1411636, CNS-1618339, CNS-1617729, CNS-1814322, and CNS-1836772.
Peng Zheng gratefully acknowledges financial support from Na-
tional Key R&D Program of China (2017YFB0801703), the NSFC
(61672425) and China Scholarship Council.

REFERENCES

[1] 2019. Cisco T-Rex: Realistic traffic generator. https://trex-tgn.cisco.com

[2] Mihai Dobrescu et al. 2009. RouteBricks: Exploiting Parallelism to Scale Software
Routers. In ACM SOSP’09.

[3] Mihai Dobrescu et al. 2012. Toward Predictable Performance in Software Packet-
Processing Platforms. In USENIX NSDI'12.

[4] Amin Tootoonchian et al. 2018. ResQ: Enabling SLOs in Network Function Virtu-
alization. In USENIX NSDI'18.

[5] Peng Zheng et al. 2019. A Closer Look at NFV Execution Models. In ACM APNet’19.

https://trex-tgn.cisco.com

	Abstract
	1 Introduction
	2 The Hybrid Approach
	3 Conclusion and Future work
	Acknowledgments
	References

