
A Closer Look at NFV Execution Models
Peng Zheng∗

Xi’an Jiaotong University and
University of Minnesota

pzheng@umn.edu

Arvind Narayanan
University of Minnesota
arvind@cs.umn.edu

Zhi-Li Zhang
University of Minnesota
zhzhang@cs.umn.edu

ABSTRACT
Network Function Virtualization (NFV) advocates running
service function chains (SFCs) on commodity servers as soft-
ware, thereby providing a new level of flexibility to the de-
ployment and management of network services. However,
as we move from 10/40 Gbps to 100/400 Gbps line rates, it
is challenging to build an NF execution framework that can
deliver high performance at the maximum line speed using
commodity servers, while providing scalability and flexibility
afforded by software. In this paper, we investigate a funda-
mental problem of any NFV framework, i.e. how to execute
SFCs on commodity servers by examining and comparing
the performance of two execution models: the pipeline and
run-to-completion models. In particular, we investigate how
the multi-core server architecture affects the performance
of SFC execution models by conducting extensive experi-
ments on a testbed and shed new insights on the design and
optimization of SFC execution models.

CCS CONCEPTS
• General and reference → Performance; • Networks
→ Network performance analysis; Middle boxes / net-
work appliances; • Hardware→ Networking hardware;

KEYWORDS
NFV, NUMA,multi-core, executionmodel, run-to-completion,
pipeline, hybrid
ACM Reference Format:
Peng Zheng, Arvind Narayanan, and Zhi-Li Zhang. 2019. A Closer
Look at NFV Execution Models. In 3rd Asia-Pacific Workshop on
Networking 2019 (APNet ’19), August 17–18, 2019, Beijing, China.
∗The work was done while Peng Zheng was a visiting Ph.D student at the
University of Minnesota.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
APNet ’19, August 17–18, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7635-8/19/08. . . $15.00
https://doi.org/10.1145/3343180.3343188

ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3343180.
3343188

1 INTRODUCTION
Thanks to its software nature, network function virtualiza-
tion (NFV) offers a great level of (potential) flexibility to
network operators to provision and manage network ser-
vices by dynamically scaling in or out instances of network
functions (NFs) on demand. However, as packet processing
on commodity multi-core servers is far slower than ASICs
used in dedicated hardware middleboxes, attaining (near)
line speed is a major challenge in NFV design, especially
when going from 10/40 Gbps to 100Gbps and beyond. This
is further compounded by the fact that various NFs are of-
ten strung together to form a service function chain (SFC)
to meet a network service objective [21]. It is a daunting
task to develop a scalable NFV framework that can continue
to attain the maximal system throughput and minimal SFC
processing latency, as the number of NFs in a SFC increases
while constituent NFs become more complex.

In this paper we start by examining the NUMA memory
hierarchy common in today’s commodity servers and argue
that memory access is a key bottleneck in increasing NFV
performance. Given the memory hierarchy and access laten-
cies of a typical commodity server (see §2 for more details),
we see that per-core packet processing speed is fundamentally
limited by the number of memory accesses: given that at
least two memory accesses are needed per NF (one for read-
ing/writing the packet header and one for reading/writing
the NF state), if these memory accesses touch the DRAM
(100ns), only about 5 millions packets can be processed per
second (per NF), yielding a throughput of merely around
2.6 Gbps when the packet size is 64B (bytes). This speed
increases 6-fold to 30Mpps (million packets per second) when
the memory access touches only the L3 cache (16.5ns). To
attain a (near) line speed of 100 Gbps, it is imperative for each
core to ensure most of its memory accesses are L1/L2 cache
bound (1.2 or 4.1ns), while employing more cores for parallel
packet processing. Therefore optimizing the operations of
each NF to minimize L1/L2 cache misses is crucial.

With this basic understanding, we then take a closer look
at two NFV execution models in the existing state-of-the-art
NFV frameworks which differ in how cores are used for
SFC processing. The run-to-completion (RTC) model [12, 20]
composes and executes all NFs in an SFC on a single core;

85

https://doi.org/10.1145/3343180.3343188
https://doi.org/10.1145/3343180.3343188
https://doi.org/10.1145/3343180.3343188

APNet ’19, August 17–18, 2019, Beijing, China Peng Zheng, Arvind Narayanan, and Zhi-Li Zhang

NUMA Node 0

DD
R4 …

…

MC

L3 cache (non-inclusive)

Core 0
L1
L2

Core 1
L1
L2

Core 22
L1
L2

Core 23
L1
L2

UPI

DD
R4 (PCIe)

NIC

PCIe Root Com.

NUMA Node 1

DD
R4 …

…

UPI

L3 cache (non-inclusive)

Core 0
L1
L2

Core 1
L1
L2

Core 22
L1
L2

Core 23
L1
L2

MC

DD
R4(PCIe)

NIC

PCIe Root Com.

Figure 1: Architecture of muti-core server

whereas the pipeline (PL) model [9, 16, 19] runs one NF per
core by processing packets across the cores in a pipeline
fashion (see more details in §3.1). Clearly, the per-packet
SFC processing latency of RTC increases with the number
of NFs (and the number of memory accesses); it achieves
high performance via scaling out, namely, running several
instances of the same SFC on multiple cores. In comparison,
PL staggers the per-packet processing latencies of different
NFs in an SFC, but must pay the performance penalty of
inter-core transfer latency: when switching from one core to
another core, the packet being processed must be transferred
via the shared L3 cache (worst case DRAM). In addition,
due to more cores being used for processing each instance
of an SFC, the number of cores available for scaling out
is also reduced. Therefore, it is believed that RTC always
outperforms PL. For example, it is shown in [20] that PL
reduces the overall system throughput by as much as a third
while increasing the SFC processing latency by up to 6 times.

Using the Intel VTune Amplifier tool [2], we conduct an
in-depth performance analysis and benchmarking of NF/SFC
packet processing. We compare the performance of the two
execution models and investigate the factors affecting their
performance. The story that emerges is far more complex.
We find that with increasing packet sizes, the performance
of PL catches up with that of RTC: both attain 100 Gbps line
speed when the packet size reaches 1024B. The performance
of RTC is limited by L1/L2 cache sizes: with more NFs in
an SFC and more “complex” NFs involved (in terms of NF
state size and the # of instructions), packing the entire SFC
and the NF states in the L1/L2 (d- and i-)caches is no longer
feasible; the performance of RTC thereby degrades quickly.
Under RTC, scaling out is done for an entire SFC, the overall
system throughput is not only constrained by the worst-
performing NF in an SFC instance, but also hinges on our
ability to properly load-balance the traffic among the SFC
instances so as to keep all cores equally busy. This is however
not an easy task, as it requires knowledge of both the types
and scopes of the NF states in the chain. In contrast, PL offers
more flexibility in optimizing and scaling out individual NFs
in an SFC, e.g., one can provision different numbers of NF
instances in an SFC to achieve better traffic load balancing
while minimizing performance bottleneck.

Table 1: Memory hierarchy of a multi-core server
Type of Size Type Access # of Clock ∼ Access
Memory Scope cycles Delay (in ns)
L1 Cache 32KB per core dedicated 4 ~1.2
L2 Cache 1MB per core dedicated 14 ~4.1
L3 Cache 33MB per socket shared 44-70 13-20

Non-local L3 33MB per socket shared 100-150 29-44
Local DRAM 192GB per socket shared 250 70

Non-local DRAM 192GB per socket shared 420 125

Our results show that refactoring and decomposing NFs
into modular functions with instructions and data localities
that can fit into L1/L2 caches is important. We also highlight
the need for intelligent NF state management. Our work
calls for software/hardware co-design of an NFV runtime
system that can optimize the NF/SFC performance at the
compile time, appropriately provision the needed resources,
and dynamically scale in/out NF & SFC instances on-demand.

2 NFV EXECUTION TARGET
Multi-core Server Architecture. A typical commodity
multi-core server architecture is shown in Figure 1. We take
our testbed server as an example to introduce the architec-
ture in detail. Our testbed consists of two high performance
servers, each equipped with a dual-socket (24-core/socket)
Intel(R) Xeon(R) Platinum 8168 CPU @2.7GHz (thus, a total
of 48 physical cores per server) clocked at 3.4GHz. Each CPU-
socket (i.e. a NUMA node) has its own set of CPU caches,
DRAMs and PCIe slots. Each physical core has dedicated
L1 and L2 caches of sizes 32KB and 1MB, respectively (for
L1, one half is used as the d-cache, the other half for the
i-cache). There is also a non-inclusive L3 cache that has a
total capacity of 33MB for each socket, shared between all its
24 cores and non-local cores (with NUMA penalty). Cache
line size for all three cache levels is 64 bytes. In modern
day servers, different NUMA nodes are connected to each
other using high-speed, low-latency, point-to-point system
buses (e.g. Intel UPI - Ultra Path Interconnect). In each of
our server, there are 3 such high-speed links that connect
both the sockets with bus speed of 10.4 GT/s. A CPU can
access data faster from components that are within its socket.
There is a latency penalty when data objects travel across
NUMA sockets which we refer to as NUMA penalty (due to
packets arriving on a NIC connected to PCIe on NUMA node
0 being processed by a CPU core connected to NUMA node
1). We now use our server to dive deeper into the memory
hierarchy and show why it matters to the performance and
scalability of NF.
Memory Hierarchy and Access Latencies. The Intel ar-
chitecture optimization reference manual [5] gives memory
access latencies in clock cycles for caches specific to our
servers. We further verify them and measure the DRAM ac-
cess latencies using Intel’s VTune Amplifier tool and present

86

A Closer Look at NFV Execution Models APNet ’19, August 17–18, 2019, Beijing, China

the empirically observed results in Table 1. Getting accurate
CPU wait times for data (e.g., packets for NF processing)
access is not trivial, and we rely on VTune to fill this gap.
Intel claims that the metrics provided by VTune are “precise”
when analyzed on Intel architectures, as it is able to tap into
the exact instruction addresses [3]. We harness this tool to
carefully and precisely investigate how NF-operator written
software/code impacts CPU wait times caused by memory-
bound data accesses. We assume this data to be present in
either a CPU core’s local L1 or L2 cache, the (per-socket)
shared L3/LLC cache, or the local/remote DRAM.

We know that CPU wait times are significantly affected by
two factors: i) location of the data in the memory hierarchy;
and, ii) whether the accessed data was updated by some
other core. In this paper, we focus on and dig deeper into
how these two factors affect CPU wait-times, and what NFV
frameworks can do to mitigate DRAM-bound latencies to
achieve high-performance. It is known that the fastest time
to access data by a CPU core is when the most updated copy
is cached in its L1 memory – and for our servers, we find this
time is merely 4 clock cycles (∼1.2 ns). If the data is not in
the L1 cache, the next fastest time is when the most updated
copy is in the requesting core’s L2 cache (∼4.1ns). Accessing
data from the L3 cache makes a CPU core wait between 44
to 70 clock cycles – due to the cache coherency issues and
low level cache architectures [7]. There is a heavy penalty
when data is accessed from the DRAM – 250 clock cycles
when accessed from the local DRAM and 420 clock cycles
from a non-local DRAM due to NUMA penalties.
Testbed and NF Implementation. Our testbed consists
of two aforementioned Intel servers, each equipped with a
(DPDK-capable) dual-portMellanox ConnectX-5 EN 100Gbps
NIC.We connect both the servers back-to-back, i.e., port 0 of
servertд is connected to port 0 of serversf c , similarly, port
1 of servertд is connected to port 1 of serversf c . servertд
acts as a traffic generator. We use TRex[1] as it is one of the
few software-based traffic generators capable of generating
100Gbps traffic1.

To illustrate the impact of multi-core NUMA architecture
on NFV performance, we have implemented several simple
yet highly optimized examples NFs2 using DPDK libraries
18.11. These include: i) An access control (ACL) NF which
1TRex can generate traffic at the 100Gbps line rate with fixed frame sizes of
64, 128, 512 or larger bytes using 22 cores. However, it can only generate
~94Gbps at most when the frame size is set to 256 bytes due to a known TRex
issue. For compatibility between the NIC and TRex, the traffic generator is
installed with CentOS 7.4 distribution.
2While the NFs we implemented have limited functionality (compared to
“commercial” NFs), they allow us to focus on the the basic NF operational
logic, the state maintained and the induced NUMA memory access patterns
when varying the packet and state sizes. They serve our goal to illustrate
how the multi-core NUMA server architecture impacts the performance of
NFs and NFV execution models.

30
50
70
90

110
130

Th
ro
ug
hp
ut
	(
M
pp
s)

State	size	(#	of	flow	entries)

(a) Performance.

0%

20%

40%

60%

M
em

or
y	
Bo
un
d

State	size	(#	of	flow	entries)

(b) DRAM bound

Figure 2: NF LB performance vs. memory accesses

performs a 5-tuple lookup using a set of configured rules to
decide whether to block a flow; ii) a simple (stateful) layer-4
load balancer (LB) which assigns a flow id to each flow using
a hash function performed on the packet’s 5-tuple header
fields, looks up a flow table using the flow id to map each
flow to one of the several destination servers by rewriting
the dst_ip and dst_port fields of the packet accordingly –
note that the arrival of the first packet of a new flow creates
a new entry in the flow table; and iii) a layer 3 forwarder
(L3FWD) which performs exact matching by looking up a rout-
ing table using a hash of the destination IP address to find
the output interface. For fast packet processing, we perform
zero-packet copy and zero-memory allocation on the packet
processing (fast) data path. To avoid memory allocation, we
reserve large pools of memory (using hugepages) at the ini-
tialization and let our custom runtime manage the memory.
We allocate 256 hugepages of 1GB size for the packet pro-
cessing runtime system. To offload packet processing and
steering logic to hardware/NIC, we use DPDK’s rte_flow
library. Depending upon the experimental settings, serversf c
is used to run multiple instances of our NF/SFC. The server
OS is Ubuntu 18.04.2. All the cores used by NFs are isolated
from the kernel scheduler. Hyper-threading is disabled.
NF Packet Processing and Performance. To ensure fast
NF packet processing, several optimization techniques are
well-known. One is to design data structures that are cache-
line friendly. Another is software prefetching which provides
hints to CPU for prefetching the data into one of its hardware
caches (especially L1/L2 caches) for faster data access. Packet
batch/burst processing is yet another technique which allows
the same set of read/write operations to be performed on a
burst of packets by taking advantage of d/i-cache localities.
DPDK libraries use these techniques extensively to avoid
DRAM bound data accesses. For example, by default, DPDK
uses a packet burst size of 32. Due to the space limitation, we
will use LB NF only to illustrate why the multi-core NUMA
architecture matters to NF packet processing performance,
as LB involves stateful read/write memory accesses. In partic-
ular, we illustrate how the size of the NF state (as measured
in terms of the # of flow entries in the flow table) affects the
performance of LB. As shown in Figure 2b and 2a, LB per-
formance degrades as the number of flow entries increases.

87

APNet ’19, August 17–18, 2019, Beijing, China Peng Zheng, Arvind Narayanan, and Zhi-Li Zhang

ACL

LB

L3FWD
CPU core

ACL

LB

L3FWD
CPU core

…

NIC

ACL

LB

L3FWD
CPU core

…

L3 Cache/DRAM

CPU core CPU core

…

NIC

CPU core

…

(b) RTC execution model(a) Pipeline execution model

L3FWDACL LB

L3 Cache/DRAM

Figure 4: Two typical execution models

For instance, the DRAM-bound memory access remains less
than 20% when the number of flow entries is less than 4K,
allowing LB to process more than ~120 Mpps, achieving a
throughput of ∼81Gbps (the maximal achievable effective
throughput with 64 bytes frame size after discounting the
inter frame gap overheads is ~62Gbps). However, when flow
entries reach more than 40K, packet processing rate drops
to 69 Mpps or less. This is mainly because more than 55% of
the data accesses are DRAM-bound.

3 EVALUATING EXECUTION MODELS
L3FWDACL LB

Figure 3: SFC of
3 NFs connected
sequentially

A typical SFC. Figure 3 depicts a sim-
ple SFC consisting of 3 network func-
tions discussed before (§2). For simplic-
ity, we consider this SFC to be a sequen-
tial chain of NFs, i.e., incoming traffic
is first processed by ACL, then LB and finally by L3FWD.3

3.1 Existing Execution Models
The following two execution models for SFC processing on
a single multi-core server4 have been used in the literature.
Pipeline (PL). This model assigns one core per NF in an
SFC, with traffic steered to each NF in the chain one by one.
Figure 4 (a) illustrates how the 3-NF SFC is executed under
the pipeline model. NFV frameworks such as NetVM [9],
ClickOS [16] and E2 [19] employ this model. Under the PL
model, packets processed by different cores must be trans-
ferred via the L3 cache, thus incurring the inter-core transfer
performance penalty [20].
Run-to-Completion (RTC). Under RTC, all NFs in an SFC
are executed in a single core, thereby avoiding transferring
packets across multiple cores. Figure 4 (b) depicts the same
3-NF SFC deployed using RTC as the execution model. NFV
frameworks using this model include NetBricks [20] and
Metron [12]. We note that accesses to the L3 cache or DRAM

3While an SFC is more generally represented as a directed-acyclic graph
(DAG), we focus on a simple sequential SFC. However, our discussions can
easily be extended and applied to NFV frameworks that employ parallelism
in SFC processing.
4Execution models can also be expand to include multiple servers. In this
short paper, we however focus on a single server. Nonetheless, our proposed
approach can easily be extended across multiple servers.

0

20

40

60

80

100

120

64 128 256 512 1024 1518

Th
ro

ug
hp

ut
 (

Gb
ps

)

Frame Size

Pipeline RTC
Generator Line Rate (100Gbps)

Figure 5: Throughput of RTC and Pipeline

may be necessary if the NF instructions and data (state and
packets) exceed the L1/L2 cache size.

Given a set of execution target servers and trafficworkload
characteristics (often dynamic in nature), a natural question
arises: which execution model is capable of attaining the
maximum line speed in SFC packet processing – so as to
achieve the server-level objectives (SLOs)? In other words,
which execution model is better in providing high performance,
scalability and flexibility for the given SFCs? To answer this
question, we provide a comprehensive in-depth analysis of
two existing SFC execution models.

3.2 Performance Evaluation
We primarily use the simple SFC in Figure 3 as an example to
analyze the performance of the PL and RTC models. Specifi-
cally, we quantify the packet inter-core transfer overheads
by measuring the wait time of a CPU core when fetching
instructions and data. This wait time is measured using the
number of CPU clock cycles. In the following, we run the
example SFC shown in Figure 3 using 18 cores for both ex-
ecution models. Under the PL model, 18 cores are used to
run 6 SFC instances, whereas under the RTC model, 18 SFC
instances are executed, one per core. We generate 90 flows
using TRex[1] at the maximal line speed, and the flows are
steered evenly to each SFC instance. We compare the perfor-
mance of PL versus RTC under varying frame/packet sizes –
from 64 bytes to 1518 bytes.
Throughput. Figure 5 shows the throughput of both RTC
and PL models. The bar with the label ‘Generator’ in Figure
5 corresponds to the throughput of the traffic generator,
giving the physical limit achievable. We summarize our key
observations: i) For frame sizes between 64 and 512 bytes,
the RTCmodel is 1.4-3.3× faster than the PL model. However,
as we further increase the frame size, the throughput of PL
gets closer to that of RTC. ii) When the frame size reaches
1024 bytes or larger, both RTC and PL reach the 100Gbps line
rate for our three-NF SFC. iii) Note that all the throughputs
in Figure 5 are the data rate, e.g., the maximum throughput
of 64 byte-sized frames is 76.0 Gbps with the corresponding
raw bit rate of 99.8 Gbps due to the 20 bytes inter-frame
gap of the Ethernet frame overhead. RTC can achieve the
maximum throughput (thus the line-rate packet processing)
for frame sizes larger than 256 bytes.

88

A Closer Look at NFV Execution Models APNet ’19, August 17–18, 2019, Beijing, China

Table 2: NFs processing cycles of two models

NFs ACL LB L3FWD

Pipeline 35.1 75.8 59.2
RTC 10.2 8.3 7.5

Latency. As shown earlier, PL has lower throughput com-
pared to RTC. This is mainly due to the inter-core transfer
overheads. To further examine such overheads, we empir-
ically analyze the per-NF process latency under each exe-
cution model for the three NFs (ACL, LB & L3FWD) in the
service function chain. We use VTune [2] to measure the
number of clock cycles CPU takes to process a function. This
metric implicitly accounts for the time CPU waits for data
to be fetched from the memory (i.e., L1/L2/L3/DRAM). The
results are shown in Table 2. We see that the average pro-
cessing latencies of RTC for ACL, LB, L3FWD are 10.2, 8.3,
7.5 cycles, resp. While the processing latencies of the same
three NFs using PL increase by 3-9×. We remark that RTC
latencies are less than 10.2 cycles because data is available
in the L1/L2 cache.
The key observation, revealed by the Table 2, is that the

inter-core transfer latency is about 52-68 cycles which is
close to clock cycles required to access data from L3 cache
(44-70 cycles as shown in Table 1). Note that the clock cycles
of ACL-processing in both RTC and PL models are less than
the L3 cache access latency; however, the processing cycles
of both LB and L3FWD are larger than minimal L3 cache
latency. Specifically, the inter-core transfer from ACL to LB
is ~68 cycles (we can approximately calculate it 75.8 − 8.3),
and ~52 cycles from LB to L3FWD (59.2 − 7.5). LB requires
16 more cycles on average than L3FWD.

3.3 Inter-core Transfer Overhead
We summarize the inter-core transfer overheads by empiri-
cally evaluating them under different experiment settings.
Table 3 shows various inter-core transfers overheads, depend-
ing on where the most updated data object being accessed is
present. From the table we can find that the inter-core trans-
fer is bound by the hierarchy of the memory system. The
fastest inter-core transfer between two cores happens when
both lie in the same NUMA node. The inter-core transfer
overhead is at least one L3 cache access (lL3), which is ~44
cycles for clean data; otherwise it is 70 clock cycles if the
data transferred is modified by the first core. For transfers be-
tween two cores on different NUMA nodes, an extra NUMA
penalty (due to UPI latency as discussed earlier) is added,
incurring 100-150 extra clock cycles. However, if the data is
not cached in the LLC/L3 cache, then the inter-core transfer
is cloned through the DRAM, the access-latency is about
250 cycles for the local DRAM (lDRAM) and 420 for non-local

Table 3: Minimal inter-core transfer overhead
Data source Latency

Local L3 - clean lL3
Local L3 - dirty lL3 + cache coherency penalty
Remote L3 lL3 + (cache coherency penalty) + NUMA penalty
Local DRAM lDRAM
Remote DRAM lDRAM + NUMA penalty

memory due to NUMA penalties. Thus, the multi-core mem-
ory hierarchy has significant impact on performance of SFC
execution models.

4 DOES RTC ALWAYS WIN?
Despite the performance advantages of the RTC execution
model, we find that RTC suffers several shortcomings. In this
section, we perform experiments to empirically demonstrate
these shortcomings.

4.1 NF States
Due to the complexity of real world SFCs, the size of the
state maintained by NFs in a SFC can be large. The length
of the SFC can also grow longer. For example, an LB NF
may maintain millions of flow mapping entries between the
public IP and private IP address; while another NF such as
L3FWD in the same chain may also need to perform an exact
hash table lookup with millions of entries. On the other hand,
the memory (L1/L2 cache) resources for each core is limited.
If one or a subset of NFs require more resources than the
local cache sizes, RTC cannot scale up to support a large
number of flows with high performance.

To demonstrate this problem, we measure the throughput
of RTC under different flow table sizes. We configure the
number of state entries of LB and L3FWD in our SFC from 100
to 100K, and then send the same number of flows – randomly
generated – to the SFC instances. We use 18 cores and test
with the frame sizes of 64 and 128 bytes. The results shown
in Figure 6 suggest that when the state size (as measured by
the number of flow entries) of LB and L3FWD grow from 1K
to 100K, the throughput drops by 2.2-2.3×. Further analysis
shows that the performance degradation is mainly caused by
cache misses in the flow or hash table look-ups. Recall that
each CPU core of our server contains about 1MB dedicated
L1 and L2 caches. If a core suffers a L2 cache miss, it has to
fetch the data from the LLC/L3-cache or DRAM, which is
similar to incurring an inter-core transfer penalty (§3.2).

4.2 Cache Locality
With increasingly complex NF behavior and diverse access
patterns of NF states, coupled with a large number of NFs in
a SFC, the RTC model can suffer poor cache locality (both
i-cache and d-cache). To demonstrate the d-cache locality
problem, we measure the percentage of DRAM-bound mem-
ory accesses under RTC for varying NF state sizes. Figure 7
shows that the DRAM-bound data accesses of RTC increase

89

APNet ’19, August 17–18, 2019, Beijing, China Peng Zheng, Arvind Narayanan, and Zhi-Li Zhang

30

40

50

60

70

80
10

0 1k 2k 4k 8k 12
k

16
k

20
k

40
k

80
k

10
0k

Th
ro

ug
hp

ut
 (

M
pp

s)

of flows per core

64
128

Figure 6: RTC through-
put with NFs states size

0%

10%

20%

30%

40%

50%

60%

10
0 1k 2k 4k 8k 12
k

16
k

20
k

40
k

80
k

10
0k

M
em

or
y

Bo
un

d

of flows per core

DRAM+Cache

DRAM

Figure 7: Memory bound
of RTC execution model

significantly as the flow table size grows. The memory bound
% measures the fraction of clock cycles (or time) when a CPU
core is stalled due to load or store instructions: the bar la-
beled “DRAM” represents the amount of time CPU is stalled
due to load/store instructions bound to the DRAM, while
the bar labeled “DRAM+Cache” represents the time CPU is
stalled due to the same instructions bound to the DRAM or
caches. When all the NF states and instructions can fit into
the L1/L2 caches, RTC performs very well. However, when
the total state size in an SFC grows significantly larger than
the cache sizes, RTC suffers L1/L2 cache misses, resulting in
significant performance degradation. Hence RTC does not
scale well as the length or complexity of SFC grows.

4.3 Flexibility
The RTC model also falls short in terms of providing flexibil-
ity in SFC scaling: the entire SFC must be replicated, whereas
under the PL model, individual NFs can be replicated and
scaled out/in. The RTC model must allocate resources for
all the NFs even though only one NF in the chain is the
bottleneck. In contrast, under the PL model, one can scale
out only the worst performing NFs in the chain. This leads
to cost-savings and better efficiency in resource utilization.
Lastly, the RTC model cannot exploit the benefits of NF level
parallelism [22, 25], which can significantly reduce the over-
all SFC processing latency. In contrast, NF level parallelism
can be easily supported by the PL model.

5 RELATEDWORKS
NFV execution model and NUMA architecture. Exist-
ing NFV systems either deploy RTC [12, 20] or PL [9, 16, 19]
model. None of them provide in-depth analysis and compari-
son of these execution models under the NUMA architecture.
Routebricks [6] is perhaps the first to design software routers
on multi-core servers, comparing the pipeline versus paral-
lel (“RTC”) execution models for packet processing. But the
routing NFs under consideration are stateless only.
NFV/SFCOptimization. Various approaches have been de-
veloped for improving NFV/SFC performance, e.g., paralleliz-
ing NF chains [22, 25], reducing redundant operations [4, 15],
improving CPU scheduling efficiency [14, 20, 23], providing
faster I/O [8, 9, 16], profiling and bottleneck detection of

NFs [10, 17, 18] and offloading certain NF operations to NIC-
s/switches [12]. These studies complement our work, which
focus on NFV execution models.
SFC Scalability. NFV state management is key to scala-
bility and fault tolerance of SFC which has been widely ex-
plored [11, 13, 24]. However, the impact of NUMA memory
architecture and cache resources on SFC scaling is seldomly
discussed. Our work sheds new insights on further directions
in NFV/SFC state management.

6 ON-GOINGWORK & CONCLUSION
Our initial evaluation results show that both PL and RTC
models have their own pros and cons when it comes to per-
formance, scalability and flexibility. To the best of our knowl-
edge, no existing work has systematically examined the SFC
execution models under multi-core server target execution
environments, in particular how the NUMA memory hier-
archy affects their performance in depth. Our work also
suggests why a NFV framework with a hybrid execution
model can potentially be advantageous. Such a model can
combine the respective strengths of RTC and PL, while mit-
igating their shortcomings. We outline several challenges
and on-going directions toward the envisioned hybrid model
we are pursuing.

• How to profile NFs automatically. Understanding the
behavior of each NF in a SFC is essential to choose the best
execution model. To do this, we can either use a precise
profiling tool such as Intel vTune [2] to characterize the
NF performance on specific hardware architectures, or per-
form static program analysis, e.g., symbolic execution [10],
to generate NF performance behavior profiles.

• How to scale NFs elastically. The key is to manage the
NF state in a scalable manner, i.e., how to refactor a large
NF state to smaller components that fit into different CPU
caches, perform NF state-aware traffic partition to leverage
traffic parallelism, and steer the traffic appropriately to be
executed by each SFC instance so as to reduce CPU wait
times and increase its utilization.

• How to schedule NF execution dynamically. We need a
SFC runtime system to schedule NFs dynamically to improve
the efficiency and meet SLOs of various SFCs. Toward this
end, we are building a new NFV framework that supports
rapid NF development with ease-of-orchestration in a multi-
core server architecture. This can be further extended to
multi-server/cluster environments.

ACKNOWLEDGMENTS
The research is supported in part by US NSF under Grants
CNS-1411636, CNS-1618339, CNS-1617729, CNS-1814322,
and CNS-1836772. Peng Zheng gratefully acknowledges fi-
nancial support from National Key R&D Program of China
(2017YFB0801703) and China Scholarship Council.

90

A Closer Look at NFV Execution Models APNet ’19, August 17–18, 2019, Beijing, China

REFERENCES
[1] 2019. Cisco T-Rex: Realistic traffic generator. (2019). https://trex-tgn.

cisco.com
[2] 2019. Intel VTune Amplifier. https://software.intel.com/en-us/vtune.

(2019).
[3] 2019. Memory Access Analysis for Cache Misses and High Bandwidth

Issues (Intel VTune Amplifier 2019 User Guide). https://software.intel.
com/en-us/vtune-amplifier-help-memory-access-analysis. (2019).

[4] Anat Bremler-Barr, Yotam Harchol, and David Hay. 2016. Open-
Box: A Software-Defined Framework for Developing, Deploying, and
Managing Network Functions. In Proceedings of the 2016 ACM SIG-
COMMConference (SIGCOMM ’16). ACM, New York, NY, USA, 511–524.
https://doi.org/10.1145/2934872.2934875

[5] Intel Corporation. 2019. Intel 64 and IA-32 Architectures Optimization
Reference Manual. (2019). https://software.intel.com/en-us/download/
intel-64-and-ia-32-architectures-optimization-reference-manual

[6] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun,
Kevin Fall, Gianluca Iannaccone, Allan Knies, Maziar Manesh, and
Sylvia Ratnasamy. 2009. RouteBricks: Exploiting Parallelism to Scale
Software Routers. In Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles (SOSP ’09). ACM, New York, NY, USA,
15–28. https://doi.org/10.1145/1629575.1629578

[7] Alireza Farshin, Amir Roozbeh, Gerald Q. Maguire, Jr., and Dejan
Kostić. 2019. Make the Most out of Last Level Cache in Intel Processors.
In Proceedings of the Fourteenth EuroSys Conference 2019 (EuroSys ’19).
ACM, New York, NY, USA, Article 8, 17 pages. https://doi.org/10.1145/
3302424.3303977

[8] Massimo Gallo and Rafael Laufer. 2018. ClickNF: a Modular Stack
for Custom Network Functions. In 2018 USENIX Annual Technical
Conference (USENIX ATC 18). USENIX Association, Boston, MA, 745–
757. https://www.usenix.org/conference/atc18/presentation/gallo

[9] Jinho Hwang, K. K. Ramakrishnan, and Timothy Wood. 2014. NetVM:
High Performance and Flexible Networking Using Virtualization on
Commodity Platforms. In 11th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 14). USENIX Association,
Seattle, WA, 445–458. https://www.usenix.org/conference/nsdi14/
technical-sessions/presentation/hwang

[10] Rishabh Iyer, Luis Pedrosa, Arseniy Zaostrovnykh, Solal Pirelli, Kate-
rina Argyraki, and George Candea. 2019. Performance Contracts for
Software Network Functions. In 16th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 19). USENIX Association,
Boston, MA, 517–530. https://www.usenix.org/conference/nsdi19/
presentation/iyer

[11] Murad Kablan, Azzam Alsudais, Eric Keller, and Franck Le. 2017. State-
less Network Functions: Breaking the Tight Coupling of State and
Processing. In 14th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 17). USENIX Association, Boston, MA, 97–
112. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/kablan

[12] Georgios P. Katsikas, Tom Barbette, Dejan Kostić, Rebecca Steinert,
and Gerald Q. Maguire Jr. 2018. Metron: NFV Service Chains at the
True Speed of the Underlying Hardware. In 15th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 18). USENIX As-
sociation, Renton, WA, 171–186. https://www.usenix.org/conference/
nsdi18/presentation/katsikas

[13] Junaid Khalid and Aditya Akella. 2019. Correctness and Performance
for Stateful Chained Network Functions. In 16th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 19). USENIX
Association, Boston, MA. https://www.usenix.org/conference/nsdi19/
presentation/khalid

[14] Sameer G. Kulkarni, Wei Zhang, Jinho Hwang, Shriram Rajagopalan,
K. K. Ramakrishnan, Timothy Wood, Mayutan Arumaithurai, and
Xiaoming Fu. 2017. NFVnice: Dynamic Backpressure and Scheduling
for NFV Service Chains. In Proceedings of the Conference of the ACM
Special Interest Group on Data Communication (SIGCOMM ’17). ACM,
New York, NY, USA, 71–84. https://doi.org/10.1145/3098822.3098828

[15] Guyue Liu, Yuxin Ren, Mykola Yurchenko, K. K. Ramakrishnan, and
Timothy Wood. 2018. Microboxes: High Performance NFV with Cus-
tomizable, Asynchronous TCP Stacks and Dynamic Subscriptions. In
Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM ’18). ACM, New York, NY, USA,
504–517. https://doi.org/10.1145/3230543.3230563

[16] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Mi-
chio Honda, Roberto Bifulco, and Felipe Huici. 2014. ClickOS and the
Art of Network Function Virtualization. In 11th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 14). USENIX As-
sociation, Seattle, WA, 459–473. https://www.usenix.org/conference/
nsdi14/technical-sessions/presentation/martins

[17] P. Naik, D. K. Shaw, and M. Vutukuru. 2016. NFVPerf: Online per-
formance monitoring and bottleneck detection for NFV. In 2016 IEEE
Conference on Network Function Virtualization and Software Defined
Networks (NFV-SDN). 154–160. https://doi.org/10.1109/NFV-SDN.2016.
7919491

[18] Jaehyun Nam, Junsik Seo, and Seungwon Shin. 2018. Probius: Auto-
mated Approach for VNF and Service Chain Analysis in Software-
Defined NFV. In Proceedings of the Symposium on SDN Research
(SOSR ’18). ACM, New York, NY, USA, Article 14, 13 pages. https:
//doi.org/10.1145/3185467.3185495

[19] Shoumik Palkar, Chang Lan, Sangjin Han, Keon Jang, Aurojit Panda,
Sylvia Ratnasamy, Luigi Rizzo, and Scott Shenker. 2015. E2: A Frame-
work for NFV Applications. In Proceedings of the 25th Symposium on
Operating Systems Principles (SOSP ’15). ACM, New York, NY, USA,
121–136. https://doi.org/10.1145/2815400.2815423

[20] Aurojit Panda, Sangjin Han, Keon Jang, Melvin Walls, Sylvia Rat-
nasamy, and Scott Shenker. 2016. NetBricks: Taking the V out of
NFV. In 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16). USENIX Association, Savannah, GA, 203–
216. https://www.usenix.org/conference/osdi16/technical-sessions/
presentation/panda

[21] Carlos Pignataro and Joel Halpern. 2015. Service function chaining
(SFC) architecture, RFC 7665. (2015).

[22] Chen Sun, Jun Bi, Zhilong Zheng, Heng Yu, and Hongxin Hu. 2017.
NFP: Enabling Network Function Parallelism in NFV. In Proceed-
ings of the Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM ’17). ACM, New York, NY, USA, 43–56.
https://doi.org/10.1145/3098822.3098826

[23] Amin Tootoonchian, Aurojit Panda, Chang Lan, Melvin Walls, Ka-
terina Argyraki, Sylvia Ratnasamy, and Scott Shenker. 2018. ResQ:
Enabling SLOs in Network Function Virtualization. In 15th USENIX
Symposium on Networked Systems Design and Implementation (NSDI
18). USENIX Association, Renton, WA, 283–297. https://www.usenix.
org/conference/nsdi18/presentation/tootoonchian

[24] ShinaeWoo, Justine Sherry, Sangjin Han, Sue Moon, Sylvia Ratnasamy,
and Scott Shenker. 2018. Elastic Scaling of Stateful Network Func-
tions. In 15th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 18). USENIX Association, Renton, WA, 299–312.
https://www.usenix.org/conference/nsdi18/presentation/woo

[25] Yang Zhang, Bilal Anwer, Vijay Gopalakrishnan, Bo Han, Joshua Reich,
Aman Shaikh, and Zhi-Li Zhang. 2017. ParaBox: Exploiting Parallelism
for Virtual Network Functions in Service Chaining. In Proceedings of
the Symposium on SDN Research (SOSR ’17). ACM, New York, NY, USA,
143–149. https://doi.org/10.1145/3050220.3050236

91

https://trex-tgn.cisco.com
https://trex-tgn.cisco.com
https://software.intel.com/en-us/vtune
https://software.intel.com/en-us/vtune-amplifier-help-memory-access-analysis
https://software.intel.com/en-us/vtune-amplifier-help-memory-access-analysis
https://doi.org/10.1145/2934872.2934875
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-optimization-reference-manual
https://software.intel.com/en-us/download/intel-64-and-ia-32-architectures-optimization-reference-manual
https://doi.org/10.1145/1629575.1629578
https://doi.org/10.1145/3302424.3303977
https://doi.org/10.1145/3302424.3303977
https://www.usenix.org/conference/atc18/presentation/gallo
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/hwang
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/hwang
https://www.usenix.org/conference/nsdi19/presentation/iyer
https://www.usenix.org/conference/nsdi19/presentation/iyer
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kablan
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/kablan
https://www.usenix.org/conference/nsdi18/presentation/katsikas
https://www.usenix.org/conference/nsdi18/presentation/katsikas
https://www.usenix.org/conference/nsdi19/presentation/khalid
https://www.usenix.org/conference/nsdi19/presentation/khalid
https://doi.org/10.1145/3098822.3098828
https://doi.org/10.1145/3230543.3230563
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/martins
https://doi.org/10.1109/NFV-SDN.2016.7919491
https://doi.org/10.1109/NFV-SDN.2016.7919491
https://doi.org/10.1145/3185467.3185495
https://doi.org/10.1145/3185467.3185495
https://doi.org/10.1145/2815400.2815423
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/panda
https://doi.org/10.1145/3098822.3098826
https://www.usenix.org/conference/nsdi18/presentation/tootoonchian
https://www.usenix.org/conference/nsdi18/presentation/tootoonchian
https://www.usenix.org/conference/nsdi18/presentation/woo
https://doi.org/10.1145/3050220.3050236

	Abstract
	1 Introduction
	2 NFV execution target
	3 Evaluating Execution Models
	3.1 Existing Execution Models
	3.2 Performance Evaluation
	3.3 Inter-core Transfer Overhead

	4 Does RTC Always Win?
	4.1 NF States
	4.2 Cache Locality
	4.3 Flexibility

	5 Related Works
	6 On-going Work & Conclusion
	Acknowledgments
	References

