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Abstract—Software-de ned network (SDN) is deemed to
enable more dynamic management of data center networks that
promptly respond to network events with changes in network
policies. Although the SDN controller architecture is increasingly
optimized for swift policy updates, the data plane, especially the
prevailing TCAM-based ow tables on physical SDN switches,
remains unoptimized for fast rule updates, and is gradually
becoming the primary bottleneck along the policy update pipeline.

In this paper, we present RuleTris, the rst SDN update
optimization framework that minimizes rule update latency for
TCAM-based switches. RuleTris employs the dependency graph
(DAG) as the key abstraction to minimize the update latency.
RuleTris ef ciently obtains the DAGs with novel dependency
preserving algorithms that incrementally build rule dependency
along with the compilation process. Then, in the guidance of
the DAG, RuleTris optimizes the rule updates in TCAM to
avoid unnecessary entry moves, which are the main cause of
TCAM update inef ciency. We prove that RuleTris generates
TCAM updates with the minimum number of TCAM entry
moves. In evaluation, RuleTris achieves a median of <12ms and
90-percentile of <15ms the end-to-end per-rule update latency
on our hardware prototype, outperforming the state-of-the-art
composition compiler CoVisor by 20 times.

I. INTRODUCTION

One of the key capacities promised by software-de ned
network (SDN) is the ability to dynamically change the
network states in response to the global view. Based on how
fast network states can respond to network events, lots of
new network applications can become practical. For example,
carrier network has a strict 50ms requirement for failure
recovery [1], entailing a 10ms to 25ms delay budget for
implementing the rerouting rules. Traf c engineering in data
centers has a delay budget as short as 100ms for the entire
control loop [2], leaving less than 20ms delay budget for
implementing ow rules. Advanced malware quarantine [3]
in enterprise networks has an even stricter delay budget since
the threat detection is done at near line-rate and the quarantine
decisions need to take effect as fast as possible.

The recent advances on SDN controller architecture greatly
shorten the processing latency of the control plane, which
leaves the rule installation latency the primary bottleneck for
the SDN control loop. Speci cally, the recent measurement [4]
exhibits a rule installation delay ranging from 33ms to
400ms with a moderate to high ow table utilization on
three commercial OpenFlow switches using ternary content-
addressable memory (TCAM), which is the mainstream
hardware to implement OpenFlow compatible ow tables 1.
In addition, the measurement also nds that the switches

1Our survey indicates that at least 32 out of all 48 series of OpenFlow
supported switches from 13 major vendors use TCAM to implement OpenFlow
compatible ow tables.

can “periodically or randomly stop processing control plane
commands for up to 400ms”, which further exacerbates the
rule installation latency.

Although some existing works optimize the policy updates
at different stages of the pipeline, their improvements are
limited. Dionysus [5], for example, signi cantly reduces multi-
switch policy update latency caused by suboptimal scheduling.
CoVisor [6] and our previous short paper [7] minimize the
number of rule updates sent to switches through eliminating
redundant updates. However, since both approaches do not
change the update mechanism on physical switches, they all
suffer from the aforementioned per-rule update bottleneck.
Existing TCAM update optimization techniques, on the
other hand, are either dependent on specialized multi-stage
SRAM/TCAM structure [8], [9], [10] or only applicable to
single- eld longest pre x matching [11].

In this paper, we aim to tackle the update latency bottleneck
on the TCAM-based SDN switches. Our measurement
and analysis exhibit that the TCAM update latency is
the single dominant factor of the rule update latency.
Interestingly, although a single entry move in TCAM usually
has a constant sub-millisecond delay, we observe that
an OpenFlow rule update sometimes triggers hundreds to
thousands of unnecessary entry moves in TCAM to maintain
rule dependency due to its unawareness of the minimum
dependency information.

We present RuleTris, the rst SDN update optimization
framework that minimizes rule update latency in TCAM. Our
study reveals that the minimum dependency graph (DAG) [10],
[12], [13] is the key information towards optimal rule updates.
RuleTris is comprised of a front-end and a back-end as
depicted in Figure 1. The RuleTris front-end is a generic
policy compiler that produces DAGs while composing multiple

ow tables. The DAG produced by the front-end along with
the ow table is then passed to the back-end for update
optimization. The RuleTris back-end is a set of hardware-
speci c optimizers that map the DAG into a sequence of
TCAM entry moves. The optimizers minimize the ow table
size and the number of entry moves by exploiting the minimum
dependency information.

To realize such an optimization framework, the primary
challenge is to generate DAG ef ciently. In fact, the existing
DAG extraction algorithm is prohibitively time consuming
for our target latency [13]. To this end, we embrace
the policy composition paradigm [14]. Our previous short
paper proposes to preserve rule dependency within NetKAT
policy compiler [15] to reduce computation. Extending it
for generic policy compilation is quite non-trivial since a
common ow table abstraction needs to be employed in the
dependency reservation algorithms. Furthermore, to minimize
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Fig. 1: Overview of RuleTris optimization framework.

the compilation overhead, the DAG needs to be compiled
incrementally as policies evolve over time. On the back-end,
an optimal while ef cient scheduling algorithm is also needed
to map the incremental graph changes into minimum TCAM
entry moves.

RuleTris solves these challenging problems with the
following contributions.

1) We develop general dependency preserving algorithms that
preserve DAG along with ow table composition. The
algorithms achieve ef ciency by exploiting the dependency
implications of composition operators. The algorithms are
generic to SDN policy languages that employ policy
compositions (sequential, parallel and priority), and are
guaranteed to produce the minimum DAG.

2) We further speed up the compilation by incrementally
compiling ow table changes. We employ incremental
compilation techniques and develop algorithms to handle
incremental DAG compositions.

3) We develop ef cient back-end scheduling algorithms to map
incremental DAG changes to rule updates in TCAM. Our
back-end components optimize the rule updates to achieve
provably minimum entry moves in TCAM, eliminate
redundant rules and provide support for ef cient rule
caching hierarchy to scale up the size of ow tables.

RuleTris can be deployed in a variety of settings. It can
be embedded to a policy compiler, so that minimum updates
can be generated even for these incremental-agnostic SDN
applications that populate non-minimum rule updates. It can
also be built as extensions of SDN controllers or controller
hypervisors, so that the policy composition of multiple SDN
applications or controllers is updated with minimum number
of operations.

We fully implement RuleTris front-end as a standalone
composition compiler, and the back-end in the rmware of the
data-plane programmable hardware-based ONetSwitch [16],
[17]. Through hardware evaluation, we demonstrate that
RuleTris achieves a median of <12ms and 90-percentile of
<15ms the per-rule update latency, outperforming the state-of-
the-art composition compiler CoVisor deployed on the same
hardware switch by 20x. Our large scale emulation indicates
even greater speedup on larger TCAM size.

Roadmap. We give background in §II, followed by an
overview in §III. We describe the front-end design in §IV
and back-end design in §V. We present our implementation in
§VI, evaluation in §VII, provide discussions on future topics
in §VIII. We review related work in §IX and conclude in §X.

II. BACKGROUND

a) Rule Updates on Physical Switches: TCAM is the
mainstream hardware to implement ow tables in hardware

SDN switches. Although TCAM offers incomparable lookup
performance, current commercial TCAM solutions are slow
on rule update. Measurement studies show that a single rule
update can bring tens to hundreds of milliseconds of data plane
disruption on state-of-the-art switches [4], [18], since typically
conducting updates requires locking TCAM from accepting
data plane lookup requests.

Maintaining rule dependency is the main reason to blame
for the slow updates of TCAM. In fact, one rule update from
the controller can often result in massive TCAM entry moves.
This is because TCAM implements rule dependency using
the relative physical location [11], [19], i.e., a rule located
at a higher physical address has a higher matching priority.
Although other dependency encoding schemes have been
proposed, the physical location encoding is still the mainstream
implementation today[20]. Upon the arrival of a new rule, the
switch rmware 2 may have to move many existing entries in
order to keep the correct rule dependency. Furthermore, since
multiple TCAM entry updates cannot be conducted in parallel,
the massive TCAM moves eventually lead to signi cant rule
update latency. The approach RuleTris takes to minimize rule
update latency is to eliminate unnecessary TCAM entry moves
through maintaining a minimum DAG.

b) Rule Dependency: The predicate of a rule speci es
the ow space the rule should match. When two rules have
an overlapping predicate, the matching ambiguity needs to be
resolved by specifying a matching order. In the context of
a ow table, we de ne the rule dependency as the relation
between a pair of rules if their matching order changes the
actual rule matching semantics. Without loss of generality, we
say Rule A is dependent on Rule B if Rule B should be
matched rst.

Obviously, the dependency relations form a directed acyclic
graph, or DAG [10], [12]. The minimum DAG reveals the
inherent relationship among rules in a sense that it represents
the minimum set of the matching order constraints in order
to keep the correct classi cation semantics of ow space. In
this paper, we use the term DAG to refer speci cally to the
minimum dependency graph of a ow table.

In fact, assigning rules with integer priority values is
the way OpenFlow employs to unambiguously represent rule
dependency. However, rule priority does not directly induce a
set of minimum dependency relations in a sense that two rules
with different priority values are not necessarily dependent.

c) Modular Composition: Modular composition was
widely used in network programming languages and hyper-
visors to provide transparent composition and collaboration
of control plane applications [6], [14], [15], [21]. In this

2Also refered as TCAM ASIC driver in the switch OS.
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Fig. 2: An example rule insert in a TCAM table. The original
TCAM table has ve entries (Rule 1-5) and one empty slot in
the end. Rule 6 needs to be inserted between Rule 1 and Rule 2.
In Fig(a), the rmware schedules the insertion plan according
to the dependencies implied by the priority values, therefore
Rule 2 through Rule 5 are moved in order to preserve their
relative positions. In Fig(b), however, the DAG indicates the newly
inserted Rule 6 has no dependency with Rule 3 and Rule 4,
therefore only Rule 2 and Rule 5 needs to be moved.

paper, we compose applications with three composition
operators: parallel operator, sequential operator and priority
operator. Parallel operator (+) creates the illusion that
multiple applications to independently process the same traf c.
Sequential operator (>) allows an application to process the
traf c before another. Priority operator ($) gives an application
the priority to act on some traf c while yielding the control
of the rest to other applications.

A composition compiler is typically used to compile the
composition of applications into a semantically equivalent ow
table to install on the physical switches. Since applications
can act on different header elds, the result ow table usually
contains many rules that overlap with each other. All existing
composition compilers use priorities to keep the dependency.

III. RULETRIS OVERVIEW

In this section, we rst motivate the necessity of the
DAG with an example in §III-A. We then depict RuleTris
optimization framework in §III-B, followed by the optimality
claims in §III-C.

A. Bene ts of DAG

Generally, optimally updating TCAM in physical switches
requires a minimum DAG. In implementing a rule update
in the TCAM, integer priority values provide the complete
dependency information and thus can be used to generate
semantically correct update schedule. For example, in Figure 2,
Rule 6 is to be added to the ow table. As shown in
Figure 2(b), according to the relative priorities, Rule 6 should
be placed at a slot with a higher physical address than Rule
2 through Rule 5 and a lower address than Rule 1. Since the
only available slot is at the bottom, each of Rule 2 through
Rule 5 has to move one slot down to make room for Rule 6.

However, priority values do not guarantee optimality
in rule updates. In fact, the integer priority representation
implies that all rule pairs with different priority values have
dependency, which introduces a huge amount of non-existing
dependency constraints. During the rule update, the redundant
dependencies lead to unnecessary TCAM entry moves.

Instead, the DAG represents a minimum set of dependency
constraints and guarantees to produce the optimal update
schedule (we will show the optimality in §III-C). For example,
Figure 2(c) shows the optimal update schedule guided by the
DAG. Since Rule 6 and Rule 2 has no overlapping ow space
with Rule 3 and Rule 4, the optimal update schedule only
needs to make two extra entry moves instead of four.

The above example shows the bene t of the DAG in
scheduling rule updates. In fact, maintaining the DAG provides
a series of other bene ts. For example, the DAG makes it
straightforward to generate a ow table without rules that are
entirely obscured by higher priority rules. By scanning the

ow-table in the topological order of the DAG, we can easily
eliminate the redundant rules that will never be matched or
do not alter the data plane behavior. Also, DAG enables an
ef cient way to support arbitrarily large ow tables through
rule caching [13].

B. End-to-End Optimization Framework

The above example shows the importance of the DAG, and
leads us to the design of RuleTris optimization framework as in
Figure 1. RuleTris optimization framework is comprised of the
front-end composition compiler and the back-end optimizers.

a) Front-end: RuleTris allows administrators to com-
pose multiple controller applications or controllers through
composition operators. Such capacity is provided by a
general-purpose composition compiler that makes up the
RuleTris front-end. RuleTris composition compiler interfaces
with applications or controllers, accepting their proactive or
reactive modi cation of the network policies. Similar with
other composition compilers, RuleTris composition compiler
is con gured by the administrator to compose the application
policies into a single policy implementation for physical
network devices.

Except for the compiled ow tables, RuleTris further
generates the DAGs to resolve the matching ambiguity, which
replaces the integer priority values used in other composition
compilers. Upon the arrival of proactive network policy
installation, RuleTris compiles the policies in batch, and
supplies the back-end with a fresh ow table with the entire
DAG. Upon the arrival of reactive policy updates, RuleTris
compiles the policy updates in an incremental manner, and
supplies the back-end with incremental rule inserts, deletes
and modi cations together with the updates to the DAG.

RuleTris does not require applications/guest controllers to
be dependency-aware. If an application populates prioritized

ow tables, RuleTris can extract the DAGs from the prioritized
ow tables.

b) Back-end: The RuleTris back-end optimizers exploit
the bene ts of the DAG and optimize the actual rule
installation/update process in the physical switches. For now,
RuleTris provides three back-end optimizers. The update
scheduler conducts hardware-speci c optimization with DAG,
and generates provably minimum-size update schedule to
implement rule updates in TCAM tables. The redundancy
eliminator removes two types of redundant rules. The
CacheFlow manager manages multi-level rule cache and
conducts rule eviction guided by the DAG [13]. RuleTris back-
end directly generates sequence of TCAM entry moves.

c) Front-end/back-end communication: In this paper,
we assume RuleTris back-end is co-located with physical
switches. The front-end to back-end communication is
carried through the control channel, e.g., OpenFlow. RuleTris
extends OpenFlow protocol with DAG extension using the
experimenter message, so as to allow protocol message to carry
DAG or DAG update. Alternatively, RuleTris back-end can
also be co-located with the front-end. In this way, no DAG
extension is necessary but the control channel needs to be
extended to expose the TCAM internal layout.

181



C. Optimality Guarantees

RuleTris provides several optimality guarantees as follows.
We show how the optimality is achieved in Section V.

Claim 1. With DAG, the back-end can generate the minimum
number of entry moves that correctly implements a speci c
rule update in a TCAM.

Intuitively, this is because the dependency constraint
is the only constraint to observe during rule updates in
TCAM, and the DAG precisely represents the minimum set
of dependencies. Due to the space limitation, the proof is
provided in a separate technical report [22].

Claim 2. With DAG, the back-end can generate a ow table
without obscured rules and oating rules.

Through a simple topological scanning, RuleTris can
eliminate two types of redundant rules generated during
modular composition, i.e., the rules obscured by higher priority
rules (or obscured rules) and the rule having the same actions
with lower priority but more general rules (or oating rules).

IV. FRONT-END COMPILER

RuleTris front-end is an incremental composition compiler
that compiles forwarding policy updates from SDN appli-
cations into rule updates and DAG updates for data-plane

ow tables. State-of-the-art incremental compilation technique
allows us to compile rule updates with integer priority in a few
milliseconds [6]. However, the brute-force way to extract DAG
from prioritized ow tables has the high time complexity [7],
[13]. In practice, it can consume minutes in processing a ow
table with a few thousand rules.

Alternatively, we choose to maintain the DAG along with
the compilation process. The idea was rst introduced in
our previous short paper [7]. In this section, we extend
the NetKAT-speci c DAG preservation algorithm into an
incremental and compiler-generic front-end by exploiting
ef cient data structures and algorithms. We rst give the
background on the modular composition (§IV-A). Then, we
show how we build the DAG along with the composition
with linear time complexity (§IV-B). Finally, we present the
incremental techniques to further accelerate the compilation of
DAG updates (§IV-C).

A. Modular Composition Basics

The ultimate goal of a composition compiler is to combine
multiple member policies (or ow tables) into a single result
policy. To do so, the existing compilers use the composition
con guration (e.g., (A > B) + C) to guide the recursive
composition compilation. Then, for each composition operator,
the compiler combines the two member ow tables (T1 and
T2) into the result ow table (T3) according to the semantic of
the operator. For parallel and sequential operator, the compiler
explicitly iterates over rule pair (r1,i, r2,j) T1 × T2 in
a descending priority order, and calculates the result rule
with an operator-speci c function para(r1, r2)/seq(r1, r2) :
R × R R, where R is the universe set of rules. For
parallel operator, the function para(r1,i, r2,j) produces a result
rule with the match by taking the intersection of r1,i.match
and r2,j .match and with the actions by taking the union
of r1,i.actions and r2,j .actions. For sequential operator,
the function seq(r1,i, r2,j) produces a result rule with the
match by rst applying r1,i.actions onto r1,i.match and
then intersecting with r2,j .match, and with the actions by
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Fig. 3: Example 1 of dependency construction in parallel
composition: cross-product and empty rule removal.

taking the union of r1,i.actions and r2,j .actions. For priority
operator, the compiler simply stacks the rules in T1 on top of
T2 by con guring rules in T1 with higher priorities than rules
in T2. The reader can refer to previous policy compilers for
detailed description of the composition process [15], [23].

B. Preserving DAG during Composition

To construct the DAG during the process of a composition
operator, the RuleTris compiler needs algorithms to infer the
precise dependency relations in the result ow table from the
operand DAGs.

1) Parallel Composition: The parallel composition of T1

and T2 is calculated by taking cross-product of the operands.
Similarly, the DAG of the result ow table is also calculated
by taking the equivalent graph cross-product. Denoting two
operand graphs as G1 and G2, the graph cross-product is
de ned intuitively as

1) The vertex set of G1×G2 is the set cross-product V (G1)×
V (G2); and

2) There is a directed edge r1,i, r2,m r1,j , r2,n in G1 ×
G2 if and only if either i) r1,i = r1,j and r2,m r2,n; or
ii) r2,m = r2,n and r1,i r1,j .

The correctness proof is intuitive. Consider rule r1 depends
on rule r2, i.e., r1 overlaps with r2 and semantically r2 has a
higher priority than r1. When we intersect both of them with
a third rule r, the two result rules (r1 r) and (r2 r) still
overlap, unless either of them has an empty match.

There are two cases that need special treatment. First,
when the parallel composition of any rule pair results in an
empty match, the corresponding vertex of this rule should
not be added to the result DAG. For example, in Figure 3,
we have two ow tables T1 and T2 taking the parallel
composition. Speci cally, T1 contains four rules (A,B,C,D)
and T2 contains two rules (M,N ). In the gure, the match
space of the rules is visualized and the actions are omitted.
To obtain the result DAG, the compiler rst takes a cross-
product of the operand DAGs. Then, the compiler crosses
out the vertices of all the rules with empty match (DN and
CN ), and removes their adjacent edges from the DAG as well.
Finally, the minimum DAG is obtained as shown on the right.

The second case is when two result vertices are adjacent
but the corresponding rules have the same match. In this case,
the higher priority rule entirely obscures the other one, so the
latter becomes redundant. Although the redundant rules should
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Fig. 4: Example 2 of dependency construction in parallel
composition: equivalent rule reduction.

be maintained within the compiler for the correctness of the
future incremental rule removals, it is favorable to eliminate
such redundancy in the current output.

We design a two-level nested graph structure to ef ciently
handle such redundancy. On the higher level, the compiler uses
the rule match as the key to index the vertices, which we call
key vertices. Therefore, multiple rules with the same match
will fall into the same key vertex. If more than one rule is
inserted into one key vertex, the dependency relations between
those rules are recorded as a nested sub-graph. Within any key
vertex, there must exist one single highest priority rule, because
otherwise the composed ow table is ambiguous. When the
compiler populates the ow table from the DAG, the highest
priority rule is used to represent the key vertex, as it obscures
all other rules in this key vertex.

Figure 4 shows an example of the parallel composition of
T1 and T2. After the cross-product of the operand DAGs, we
see several sets of vertices have the same match (e.g., BN ,
DN and DM ). The compiler indexes these equivalent vertex
sets with the nested graph data structure, which populates the

ow table without redundant matches.

2) Sequential Composition: As shown in Section IV-A, the
existing compilers calculate sequential composition of T1 and
T2 in a two-level loop. The inner loop is similar to parallel
composition. Each rule r1,i in T1 produces a partial ow
table r1,i > T2. For the outer loop, different partial ow
tables are stacked by the priorities in T1. This is because
if r1,i.priority > r1,j .priority in T1, the partial ow table
produced by r1,i will always be matched prior to that by r1,j .

The DAG of the sequential composition can be also
obtained through a similar two-level loop. For each rule r1,i
in T1, the DAG of the partial ow table r1,i > T2 is
calculated by taking a cross-product, similar to the parallel
composition. Then, the partial DAGs of the partial ow tables
are stitched together according to the dependencies in T1, i.e.,
if r1,i r1,j in T1, the partial DAG induced by r1,i is also
dependent on the partial DAG by r1,j .

Figure 5 shows an example of the sequential composition
between T1 and T2. As shown in the middle of Figure 5(b),
the partial DAGs in the three large circles are derived from
the dependencies of T2, e.g., X W derives AX AW ,
BX BW and CX CW . Meanwhile, the dependencies
between partial DAGs are derived from the dependencies
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Fig. 5: Example of sequential composition.
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of T1, e.g., C A derives (CW,CX,CY,CZ)
(AW,AX,AY,AZ). Finally, after eliminating empty and
redundant rules, we get the optimal ow table and its DAG
of T3 shown on the right of Figure 5(b).

In some cases, the dependency relations between partial
DAGs (or “mega” dependencies) need further re nement to
produce a minimum set of the dependency relations. More
precisely, we can create a mega edge from rule set A to rule
set B, if for every rule pair < a, b > (a A, b B) we have
either a b or a is independent with b . We defer the detailed
discussion to Section IV-B3.

3) Priority Composition: The priority composition of T1

and T2 is derived by stacking the ow tables by priority.
Therefore, the priority composition of DAGs can be calculated
by stitching the operand DAGs with a mega dependency
relation from T2 to T1.

The challenge comes from resolving the mega dependency
between T1 and T2 into dependencies between individual rules.
Theoretically, the dependency relation between T1 and T2 does
not necessarily derives the dependency between an arbitrary
rule in T1 and an arbitrary rule in T2, since they may not
overlap with each other. In order to obtain a minimum set
of the dependency relations, the compiler needs to ef ciently
verify any possible rule dependency.

RuleTris compiler resolves the mega dependency relations
with the following recursive procedure.

• First, the mega dependency from T2 to T1 is resolved to a
set of tentative dependency relations from every sink vertex
of T2 to every source vertex of T1. For example, in Figure 6,
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Fig. 7: Example of priority composition.

the mega dependency relation is resolved to tentative edges
A Z and B Z .

• Then, for each tentative dependency edge r2 r1, the
compiler explicitly checks whether the matches of the two
rules r1 and r2 overlap. If so, edge r2 r1 is put into the
result DAG. Otherwise, the compiler recursively generates
tentative edges as follows.

For every predecessor of r2, say r3, if edge r3 r1 does
not exist in the DAG already, the compiler adds it to the
set of tentative edges, as r3 has a more general match
than r2 and may overlap with r1. In Figure 6, assuming
A and Z do not overlap, the compiler adds C Z and
D Z as tentative edges (red dashed edges).
For every successor of r1, say r4, if edge r2
r4 does not exist already, and meanwhile r1.match
is not strictly more general than r4.match (meaning
r1.match r4.match = in ow space), the compiler
also adds the edge r2 r4 to the set of tentative
edges. This is because r2 may overlap with r4 on the
excessive ow space r1.match r4.match. In Figure 6,
the compiler adds A X and A Y as tentative edges
(blue dashed edges).

• The compiler continues resolving until the set of tentative
edges is empty.

The complexity of the algorithm is bounded by the
diameter of the partial DAG, which is typically small.

Finally, Figure 7 shows an example of the priority
composition between T1 and T2. The compiler rst adds a
mega edge between the DAGs of T1 and T2. Then, the mega
edge is resolved to a tentative edge from W to B. Because
W does not overlap B, this tentative edge sprouts to tentative
edges X B and Y B. Note, W A is not added
as a tentative edge because A.match is strictly smaller than
B.match. Finally, edge X B is added to the result DAG.

C. Incremental Compilation

Ideally, when processing a rule update, the composition
compiler should only recompile the rules and the partial DAG
that change during the update. We observe that most part of
a DAG will not change during a rule update, which indicates
the opportunity of dramatic performance improvement over
recompilating from scratch.

RuleTris’s incremental compilation technique is built on
top of existing incremental composition technique. Previous

study [6] proposes an ef cient indexing structure for ow
tables, which allows the compiler to ef ciently nd the rules
that overlap with a target rule. RuleTris employs this technique
to avoid redundant computation.

The key technique RuleTris introduces is the mechanism
to compile DAG update. Upon the arrival of a rule update, the
RuleTris compiler calculates the delta DAG as follows.

Rule insert. Consider a composition of T1 and T2. When
the compiler receives a rule insert r1 with the dependency
change in T1, the compiler rst computes all the additional
rules to be added in result similar to CoVisor. For parallel
and sequential composition, it does so by looking up T2’s
index for the rules that overlap with r1, and apply composition
function para(r1, r2)/seq(r1, r2). For priority composition, r1
is simply inserted into the result ow table.

Then, the compiler calculates the changes in the DAG of
T3. It adds vertices representing each inserted rules into the
DAG. Further, the compiler handles dependency changes for
the composition operators as follows:

• For parallel composition, the compiler takes a cross-product
of the additional partial DAG in T1 and the full DAG of
T2, and the result partial DAG is added to T3.graph.

• For sequential composition, if r1 belongs to the left operand
(i.e., T1 > T2), the compiler composes r1 with T2 and
adds the result partial graph to T3.graph. The compiler
also adds the edges associated with r1 to T3.graph as
mega dependency relations, and resolves them with the
same procedure in Section IV-B2. If r1 belongs to the
right operand (i.e., T2 > T1), the compiler composes
every rule in T2 with r1, and adds the result partial
graph to T3.graph. The compiler also resolves the mega
dependencies in T3.graph, since r1 may change the actual
edges those mega edges are resolved to.

• For priority composition, the compiler rst adds the edges
associated with r1 to T3.graph, and then resolves the mega
dependency relation created by the priority operator.

RuleTris further accelerates the above graph compositions
with the rule indexing structure. When taking a partial cross-
product or sequential composition, the compiler only processes
the partial DAG of T2 whose rules overlap with r1, because
composing r1 with any rules not overlapping it will result in
an empty rule.

Rule delete. When a rule is deleted in a member ow
table, all the rules that are composed from the deleted rule are
to delete in the result ow table. If a deleted rule has both
predecessors and successors in the DAG, the compiler will
add tentative edges from every rules in the predecessor set to
every rules in the successor set. Then, the compiler veri es
the tentative edges in the same way as in Section IV-B3.

Rule modi cation. RuleTris handles rule modi cation
equivalently as one delete plus one insert.

V. BACK-END OPTIMIZER

The DAG and DAG updates generated by RuleTris front-
end are eventually exploited by RuleTris back-end to conduct
optimization to TCAM updates. RuleTris currently has three
back-end optimizers: update scheduler, duplication eliminator
and CacheFlow manager. With them, RuleTris can provide
guarantees to conduct rule updates with minimum number
of TCAM moves, to compile minimum-size ow tables with
no redundant rules and to provide support for ef cient rule
caching hierarchy.
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Fig. 8: Example TCAM move optimization.

A. Update Scheduler

The update scheduler exploits the DAG to optimize the
rule update process in the TCAM. As described in Section II,
TCAM can be viewed as a large array of rules that conducts
ef cient parallel lookup. When there are entries con icting
with each other on the match patterns, the entry located on
the highest physical address wins. As a result, the switch

rmware must maintain a correct ordering of rules during
TCAM update.

Typically, the switch rmware works as follows. Upon the
arrival of a rule insert, the rmware rst checks the dependency
relations (usually in the form of priority) with the layout of
existing rules and looks for the range of locations that satisfy
the dependency requirements. Then, it checks if there are
empty slots within that range. If so, it picks a slot and writes
the new rule in it. Otherwise, the rmware has to move the
existing rules for an extra slot.

Integer priority value provides a poor clue of actual rule
dependencies, and leads to massive redundant TCAM moves.
RuleTris update scheduler exploits the DAG to optimize the
TCAM updates. The RuleTris update scheduler rst checks if
there is an empty slot that satis es the dependency constraints
of the new rule. If so, the new rule is written to the slot.
Otherwise, the update scheduler calls Algorithm 1 to search
for an entry moving chain, which starts with the new rule and
ends with an empty slot (e.g. J D A Slottop in
Figure 8). Finally, the new rule is inserted by moving every
rule in the moving chain one slot downstream. The optimality
proof of Algorithm 1 can be found in a separate technical
report [22].

For example in Figure 8, Rule J is to be inserted and
its relative dependency is shown with the dotted arrows. The
scheduler rst nds the inserted location range between D and
E, which has no slot available. Next, the scheduler looks for
the nearest slots, which are located on the top and bottom of
the gure. Then, the scheduler searches for moving chains,
which are J D A Slottop on the upper side and
J E F Slotbottom on the lower side. Since the
number of entry moves are the same, a nal update decision
is picked on a random basis.

B. Redundancy Eliminator

The redundancy eliminator uses the DAG to remove two
types of redundant rules:

1) Obscured rules. If a rule is entirely obscured by higher
priority rules, no data plane packet will match this rule.

2) Floating rules. Consider two rules immediately adjacent in
DAG. If they share the same actions and the lower-priority

ALGORITHM 1: SHORTEST MOVING CHAIN SEARCH.

Input : Rule DAG < V,E >, TCAM layout fr : Addr. V , New
rule to insert rinsert

Output: Shortest entry moving chain

1 rsucc argmin<rinsert,r> E r.addr /* rinsert’s lowest
successor */

2 rpre argmax<r,rinsert> E r.addr /*rinsert’s highest
predecessor*/

3 dsucc(dpre) the closest empty slots from rsucc (rpre)
4 for i dpre to dsucc do
5 fr(i).move MAX INT /* initiation */

6 for i rpre.addr to rsucc.addr do

7 fr(i).move 1 /* base cases */
8 fr(i).prev rinsert

9 for i rpre.addr + 1 to dsucc.addr 1 do
10 /* Calculate the highest location rcurr can be moved to */
11 rcurr fr(i), lochi dsucc.addr
12 foreach rnext in {r| < rcurr, r > E} do
13 lochi min(rnext.addr, lochi)

14 /* Update backtrack states */
15 for j rcurr.addr + 1 to lochi do

16 if fr(j).move > rcurr.move+ 1 then

17 fr(j).move rcurr.move+ 1
18 fr(j).prev rcurr

19 for i rsucc.addr 1 downto dpre.addr + 1 do
20 rcurr fr(i), loclo dpre.addr
21 foreach rnext in {r| < r, rcurr > E} do

22 loclo max(rnext.addr, loclo)

23 for j rcurr.addr 1 downto loclo do
24 if fr(j).move > rcurr.move+ 1 then

25 fr(j).move rcurr.move+ 1
26 fr(j).prev rcurr

27 if dsucc.move < dpre.move then

28 return the backtrack path from rinsert to dsucc
29 else
30 return the backtrack path from rinsert to dpre

rule has a more general match than the higher-priority one,
the higher-priority rule is redundant because removing it
does not change the data plane behavior of the ow table.

RuleTris redundancy eliminator conducts one-time scan in
a topologically decreasing order to remove the above types
of redundant rules. Speci cally, for each rule visited, the
redundancy eliminator accumulates the match with a ow
space union. If a visited rule is entirely obscured by the
current accumulated match, it is a obscured rule and should be
removed. If a visited rule has the same actions with any of its
predecessors, and its match is narrower than the predecessor,
it is a oating rule and should be removed.

C. CacheFlow Manager

CacheFlow manager maintains a hierarchy of rule caches
and helps scale up the size of physical ow tables with larger
but slower ow table implementations, such as in SRAM. This
technique was proposed in previous work [13]. The key idea
is to maintain the correct dependency of the partial ow table
in high-speed cache by inserting “cover-set” rules that redirect
data plane packets to low-speed matching hardware. We refer
the reader to the original paper for details.

VI. IMPLEMENTATION

We implement RuleTris front-end composition compiler
with 5K lines of Java code. For comparison, we also
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implement a baseline composition compiler, which recompiles
from scratch for each update, and the CoVisor composition
compiler [6], which does ef cient incremental composition
using the priority algebra.

We implement RuleTris back-end optimizers by extending
the rmware on the ONetSwitch with 3K lines of C code [16].
ONetSwitch is hardware based all programmable SDN switch
which allows us to fully amend the rmware for RuleTris.
We extend OpenFlow v1.3 protocol with DAG support using
experimenter messages. The extension can carry both full
DAGs and incremental DAG updates from the front-end to the

rmware back-end. In the experiments, RuleTris composition
compiler uses the extended OpenFlow to talk to RuleTris back-
end rmware, while the baseline compiler and the CoVisor
compiler uses the original ONetSwitch rmware with full
OpenFlow v1.3 support.

VII. EVALUATION

We evaluate the effectiveness and runtime overhead of
RuleTris with both hardware and emulation experiments.

A. Methodology

a) Experiment Setup: We evaluate RuleTris under three
scenarios. The rst two evaluate the rule update ef ciency
of RuleTris with parallel and sequential compositions. The
third one evaluates the rule swapping ef ciency with the
CacheFlow back-end. In each scenario, we conduct hardware
experiments using aforementioned ONetSwitch with a 256-
entry TCAM ow table, and stress RuleTris with larger ow
table updates through rmware emulation. Except otherwise
noted, we maintain a reasonably high TCAM load factor of
0.90 in the emulation experiments.

We run all composition compilers on top of Ryu
controller [24]. The front-end compilation and the back-end
emulation are done on a Linux workstation with 4 cores at
2.8GHz and 8GB memory.

In the experiments, we compare RuleTris with the
following composition compilers.

Baseline. The baseline compiler recompiles the new ow
table from scratch for every rule update and assigns sequential
priority values to the new ow table.

CoVisor. The CoVisor compiler conducts incremental
compilation to rule updates with the ef cient rule indexing
structure. It assigns priority to new rules using a convenient
algebra that prevents reprioritizing.

b) Dataset:

• L3-L4 monitoring + L3 router. In this scenario, the
L3-L4 monitoring app collects ow statistics in parallel
with a L3 router conducting IP-based forwarding. We
generate monitoring rules using network lter generation
tool ClassBench [25] with the rewall con guration. L3
router rules are also generated using ClassBench, but with
the IP chain con guration.

• L3-L4 NAT > L3 router. L3 router rules are generated
similar as above. L3-L4 network address translation (NAT)
tables are randomly generated based on the IP addresses
and TCP/UDP ports of the router rules.

• CacheFlow rule swapping. CacheFlow picks a subset of
rules from a full rule set to put in cache. In our experiment,
the full rule set is a forwarding rule database with 1000
rules generated similar as previous L3 router rules. A set

of rules is randomly selected to be installed in the TCAM
as well as the necessary cover-set rules that ensure correct
matching semantics. Then, a sequence of swap-in/swap-
out operations is randomly generated to mimic the cache
swapping behavior.

c) Metrics: In the following gures, the bars show the
median, and the error bars show the 10th and 90th percentiles.

• Compilation time. The computation time to compile the
rule update in the front-end.

• Firmware time. The computation time to calculate the
update schedule from a priority-based or dependency-graph-
based rule update in the switch rmware. In hardware
experiments, this time is measured on the 800MHz ARM
Cortex-A9 CPU on ONetSwitch by switch rmware. In the
emulation experiments, the rmware time is measured on
the workstation emulating the physical switch.

• TCAM update time. The actual time to conduct rule
updates on the TCAM. Since TCAM moves are conducted
sequentially and each TCAM move costs a fairly constant
amount of time, we use the total number of moves times
the average latency of a TCAM move (0.6ms) to estimate
the TCAM update time in emulation experiments.

B. Experimental Results

Figure 9 shows the results of L3-L4 monitoring + L3 router.
In this experiment, we initiate L3-L4 monitoring table with
100 rules and L3 router with 250 to 4K rules to show how
the overhead increases. We sequentially feed 1000 updates to
compilers, each update contains one rule delete and one rule
insert to the L3-L4 monitoring table. The size of L3 routers is
set to 78 in the hardware experiment ( rst group) in order to

t the 256-entry TCAM.

The compilation time, rmware time and TCAM update
time are shown in Figure 9(a), 9(b) and 9(c) respectively.
The baseline compiler is by far the slowest regarding all
three metrics. This is because it recompiles the ow table in
every round with new priority value assignments, and thus
generates a large amount of redundant rule updates that only
modi es the rule priority. In the hardware experiment, RuleTris
exhibits 20x faster total update time than CoVisor adding all
three latency components together. And emulations indicate
even greater differences. Among three latency components,
TCAM update time contributes the most. RuleTris has the
smallest TCAM update latency, which is fairly independent
of ow table size. This is because RuleTris maintains the
DAG that helps the rmware to calculate the optimal update
schedule. Since CoVisor does not keep DAG, it is the fastest
in compilation and rmware time, but spends 1 to 3 orders of
magnitude more time on TCAM update. Note, the hardware
experiment shows a higher rmware time than emulations
because of the different capacity of the processors.

Figure 10 shows the result of L3-L4 NAT > L3 router.
Same as the previous experiment, we initiate L3-L4 NAT table
with 100 rules and L3 router with 250 to 4K rules to show how
the overhead increases. We sequentially feed 1000 updates to
compilers, each update contains one rule remove from and one
rule insert to the NAT table. The size of L3 routers is set to
126 in the hardware experiment. Again, we observe RuleTris
exhibits about 20x faster total update time than CoVisor due
to the time saved in the TCAM updates.
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Fig. 9: Rule update overhead of L3-L4 monitoring + L3 router. The rst group (HW) is hardware experiment results; and the rest
are emulation results.
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Fig. 10: Rule update overhead of L3-L4 NAT > L3 router.

Figure 11 shows the result of CacheFlow rule swapping.
In this experiment, we create a two-level CacheFlow with the
physical switch as the rst level. We vary the load factor
of the rst level from 0.8 to 1.0. We compare the rule
swapping ef ciency of RuleTris with the priority-based update

rmware. We initiate the CacheFlow manager with a thousand
L3 forwarding rules. We randomly select 205 to 256 rules
(according to the load factor) to install into the rst level.
We sequentially feed 1000 updates to the CacheFlow manager,
each update contains one rule delete and one rule insert to the
TCAM table.

The TCAM update time and rmware time are shown in
Figure 11(a) and 11(b) respectively. As expected, RuleTris’s
DAG based updates shows a dominant advantage over the
priority-based updates. The median of RuleTris TCAM update
time ranges from 0.6 to 1.2 milliseconds, whose bars can be
barely seen in the gure. In contrast, priority-based updates
costs 40 to 100 milliseconds per rule swapping, and the per-
operation cost increases signi cantly with the TCAM load
factor. The long tail of the RuleTris update time is due to some
of the swap-in rules that have dense dependency with the rules
in cache, which leads to multiple entry moves in TCAM.

VIII. DISCUSSION

Multiple tables. RuleTris currently optimizes updates to
a single ow table. Switches typically have multiple tables.
Depending on the order of execution of the tables, we can
further minimize the rule updates. For example, if we have
two TCAM tables in a pipeline, the dependencies between the
two modules in a sequential composition can be decoupled
by placing the rst one in the rst TCAM and the second
module in the second TCAM. However, the number of tables
in a hardware switch is limited. RuleTris can support more
module compositions than the number of physical ow tables.
We leave the effective distribution of rules to multiple ow
tables to our future work.

Hardware speci c optimizations. Tango [26] and
Mazu [18] have shown that different switches can have very
different latency behavior depending on the order of rule
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Fig. 11: Rule update overhead of single rule swap with
CacheFlow. Results are from hardware experiments.

updates. For example, given two ordering of a batch of rules,
one in increasing priority, the other in decreasing priority.
One switch has a much lower latency for the rst order.
Techniques [26], [18] proposed to exploit hardware behavior
can be usefully combined with RuleTris.

Network update cooperation. RuleTris considers per
switch ow table updates independently. Coordination among
several switches can be combined with RuleTris to further
reduce the number of updates [5], [27], [28], [29], [30].

IX. RELATED WORK

Modular composition. Several recent SDN policy
languages and controllers (e.g., Frenetic [21], NetCore [23],
NetKAT [15], Pyretic [14]) support modular composition.
Generally, they take high-level policies and generate ow
tables that ful ll the semantics of the sequential and parallel
composition. A recent work proposes CoVisor [6], a controller
hypervisor that assigns priority value with a convenient algebra
without changing the priority of existing rules. Although
CoVisor signi cantly reduces the number of rule updates,
it does not optimize the cost of individual rule updates.

187



Further, CoVisor assumes that the guest controllers are able to
produce optimal updates, which is still a challenging problem
for the guest controllers. In contrast, RuleTris minimizes
both the number of rule updates and the cost of individual
updates in TCAM, and it also works with incremental-agnostic
applications/controllers.

Modular composition optimization. Our previous short
paper [7] rst proposed to preserve rule dependency during
compilation. It sketched a solution framework with a compiler-
speci c dependency preserving algorithm and a heuristic-
based priority assignment strategy. RuleTris extends the idea
with two fundamental improvements. First, RuleTris proposes
a compiler-generic dependency preserving algorithm with
incremental compilation capacity in the front-end. Second,
the back-end now uses rule dependency to minimize TCAM
operations instead of rule priorities, leading to a signi cant
reduction in actual TCAM update time.

Incremental TCAM update. Another related and well-
explored topic is incremental TCAM updates. TCAM uses the
physical location to encode the priority of entries [19]. During
TCAM incremental update, TCAM controller must maintain
a correct order of entries based on the limited knowledge
of the entry dependency, causing moves of existing entries.
Although many algorithms have been proposed to infer entry
dependency and reduce the update cost [8], [9], [11], it
remains computationally challenging to obtain the minimum
dependency graph for a ow table with wildcard matching
and multiple matching elds. In contrast, we achieve the
update cost minimization through leveraging the minimum
dependency information generated in policy composition.

Incremental compilation. Most SDN compilers do
not support incremental policy compilation. In practice,
they simply compile the new policies and replace the
entire ow table of each switch. Maple [12] introduces
tree-style abstraction to support incremental ow table
compilation. However, Maple compiler does not support policy
composition and it makes redundant priority updates due to
the consecutively assigned priority values. RuleTris can be
integrated into Maple to provide optimal TCAM updates.

CoVisor [6] assigns priorities that leads to an inef cient
usage of priority value space with priority multiply, which in
turn limits the number of controllers it can support. Also, the
large number of priority levels assigned by CoVisor aggravates
to slow rule updates of TCAM. In contrast, RuleTris discards
priority values and use the DAG to represent rule dependency.

X. CONCLUSION AND FUTURE WORK

Fast incremental ow table updates due to policy changes
is critical to the agility of the SDN control plane. We identify
the TCAM update latency in physical OpenFlow switches as
one of the major bottleneck to fast ow table updates. We
present the rst end-to-end optimization framework, RuleTris
that incrementally keeps DAG during policy compilation and
exploits DAG for optimal TCAM updates. We fully implement
RuleTris and demonstrate its optimality with both hardware
experiments and emulations.
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