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1 INTRODUCTION
Programmable data planes, PDPs, enable an unprecedented
level of flexibility and have emerged as a promising alter-
native to existing data planes. However, the existing PDP
ecosystem lacks appropriate designs and primitives to sup-
port these agile testing and deployment life-cycles. At a high
level, most testing paradigms, e.g. A-B Testing [7, 8] or ca-
nary testing in Google’s [3] networks, and Differential Test-
ing [5, 6] require running new versions of a program along
side stable versions of the program. Traffic is split across
all versions and the output is compared. Orthogonally, sup-
porting agile development requires composing and merging
modular programs together. The key barriers to enable these
techniques in today’s PDPs lie in how to efficiently support
multiple PDP Programs and provide flexible operators to
enable a broad range of potential paradigms.
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Figure 1: ShadowP4 overview. The left part shows an
example of control flow merging with tables B, C
merged.

In this poster, we present ShadowP4, an abstraction layer,
that addresses the above challenges and provides testing
and development primitives as a first-order citizen of the
PDP ecosystem. The key insight behind ShadowP4 is that
the different versions of the PDP Program will share signif-
icant resources (tables and parser states) and thus we can
reduce the resource overheads of supporting multiple PDP
Programs by merging the PDP Programs and reducing redun-
dancy. ShadowP4 achieves this merge through a combination
of program analysis to identify potential program overlaps
and compiler optimizations to merge the PDP Programs and
reduce resource footprints.

2 DESIGN OF SHADOWP4
Overview. Logically, ShadowP4 operates between the PDP
Programs and the PDP target. The architecture of ShadowP4
is shown in Figure 1. ShadowP4 is composed of four com-
ponents: (1) The ShadowP4 Interface (SPI), runs on a server
providing the management interface for operators to use
to control the composition of different PDP Programs. We
implemented two operators: A-B Testing and Differential
Testing. (2) The ShadowP4 Compiler (SPC), takes, as input,
the multiple PDP Programs (e.g. the production version and
testing versions), and returns, as output, a merged PDP Pro-
gram and a ShadowP4-specific file called ShadowConfigu-
ration, which provides a mapping between the resources of
each of the PDP Programs and the merged PDP Program. (3)
The ShadowP4 controller Application (SPA), runs on the con-
troller with a global view of the network, providing runtime
control over the testing operators, e.g., to identify which traf-
fic should be tested. (4) The ShadowP4 Management agent
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Figure 2: Parser merging
in ShadowP4.
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Figure 3: Packet life-cycle
for two testing operators.

(SPM), runs on the switch, intercepts messages between the
control plane (controllers) and the merged PDP Program,
and uses the ShadowConfiguration to determine how to ap-
propriately modify the messages for each programs.

ShadowP4Compiler. SPCmerges PDP Programs in three
stages. First, SPC merges multiple control flows of PDP Pro-
grams into single one with maximum resource overlap. Cen-
tral to the SPC’s design is the identification of the maxi-
mum data plane resources within all PDP Programs that
can be “safely” merged while maintaining the semantics and
dependencies of each PDP Program. The left part of Fig-
ure 1 gives an example merge (Merged.P4) of two control
flows (Production.P4 and Testing.P4), where the tables B
C can be “safely” merged; however, tables A B can not
because merging them will introduce a loop to the control
flow. Given this information, SPC merges the PDP Programs
by: (1) rewriting the table IDs to avoid conflicting IDs, (2)
rewriting “GoTo” statements for all tables except the merged
tables to reflect the new Table IDs, (3) for merged tables, SPC
will the add appropriate branches, each as an independent
“GoTo”, to keep the dependency consistent with those before
merging. Second, SPC merges the parsers of PDP Programs.
As each parser is a finite state machine (FSM), we align the
parsers’ FSM and merge identical states. Figure 2 presents
an example of two parsers being merged, where the merged
states are in pink. We introduce the SFlag state which spec-
ifies that packets with the SFlag, i.e., test packets, should
parse the IPv6 header type, where as only packets without
the SFlag, i.e., non-test packets, should be able to parse the
VLAN header type.Third, SPCwill add corresponding tables
to support testing operators as shown below.

ShadowP4 operators. To supportA-B Testing composi-
tion, SPC adds an extra table STC, or Shadow Traffic Control
in Figure 1, which identifies a packet as either “test” or “pro-
duction” traffic and adds a bit (ShadowBit) to the packet’s
metadata. The STC is the first table that all packets encounter
and affixes the ShadowBit and also guides the packets along
the appropriate pipeline. By populating STC tables, the net-
work operators can specify which traffic or which percent of

traffic goes through the testing “pipeline”. The Differential
Testing operator is similar to the A-B Testing, using STC to
management testing traffic. The key difference is that: the
packets in A-B Testing either go to the production or the test
instances. Whereas in the Differential Testing, the test pack-
ets must be copied and send through both programs. To do
this, we leverage the recirculate primitive, which recirculates
a packet for processing in the pipeline. The packet life-cycle
is shown in Figure 3. To support comparator, SPC adds (1)
one output record table (ORT) to the end of each pipeline
to copy the outputs of each version to the pre-defined meta-
data, and (2) comparator table (CTB) to the end of the merged
pipeline to compare the outputs. The fields to be recorded
and compared can be configured to various types by oper-
ators through SPI, for example, either 16-bits or multiple
32-bits of packet header or metadata. CTB will report a mes-
sage along with the packet to controller if the outputs are not
equal. To tackle overheads of recirculating packets, the oper-
ators can reduce the number of packets sampled to achieve
an acceptable threshold.

3 IMPLEMENTATION AND EVALUATION
Implementation: We developed ShadowP4 based on the
high-level intermediate representations (HLIR) of P4 pro-
grams and it merges them into one program. Merging the
HLIR allows us to operate at a platform independent level
while maintaining the complete semantics of the P4 lan-
guage.

Testing Demo: We demonstrate the use of several Shad-
owP4 operators work for network testing on the Bmv2 [1]
switch. For A-B Testing, we first provide two P4 programs
and indicate the testing version to SPI. Then, we evaluate
the merged program from SPC on a single P4 switch Bmv2.
At runtime, we will configure the proportion for testing. We
will, also, demo how to leverage Differential Testing to test
the routing behavior of two different routing applications. To
demo this, we will provide two identical P4 router programs
to the SPI and set the comparator to record and compare the
next-hop (32 bits) fields of the testing packets. At runtime,
we control the routing tables of the two programs with two
different routing applications and demonstrate differences
as captured and exposed to the end user by the SPA.

PerformanceOverheads:Weevaluated the performance
of ShadowP4 on Bmv2 and hardware ONetSwitch [4], us-
ing various real P4 programs including L2 Switch, Router,
VLAN [2]. Due to space limitation, next we summarize our
findings: we observed that in the software switch (Bmv2), the
throughput decreased by less than 1.5% and the delay penalty
was less than 3%. For the hardware switch (ONetSwitch), we
observed that both throughput and delay were degraded by
less than 1%.
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