
SoftRing: Taming the Reactive Model for Software
Defined Networks

Chengchen Hu, Kaiyu Hou, Hao Li, Ruilong Wang, Peng Zheng, Peng Zhang, Huanzhao Wang
MOE KLINNS Lab

Department of Computer Science and Technology

Xi’an Jiaotong University

Abstract—The reactive model of Software Defined Networking
(SDN) invokes controller to dynamically determine the behaviors
of a new flow without any pre-knowledge in the data plane.
However, the reactive events raised by such flexible model
meanwhile consume lots of the bottleneck resources of the
fast memory in switch and bandwidth between controller and
switches. To address this problem, we propose SoftRing with the
motivation to mitigate the overhead to handle a reactive event.
In fact, the reactive packets are not necessarily stored in the
switch or sent to the controller; instead, they are forwarded to
traverse a pre-defined loop path. The packets will finally leave the
loop path after the switch rules related to the packet flow being
updated to switches in the loop with fewer flow entries. We have
implemented a SoftRing system that integrates the controller and
software/hardware SDN switches. The results show that SoftRing
can eliminate the fast memory requirement for reactive packets
and reduce the control channel bandwidth consumption up to
80%, with the cost of less than 5% data plane bandwidth, an
average of three extra flow entries in each switch, and minor
extra latency for the flow forwarding.

I. INTRODUCTION

In the context of Software-Defined Networking (SDN),

the controller independently computes the “knowledge” on

processing the packets and issues it to the switches in a Match-
Action abstraction, aka, flow rules/entries. To push the flow

rules into switches, a proactive mode attempts to anticipate

the network issues in advance, while a reactive model will

invoke the controller on detecting a network event.

One common trigger of the reactive model is the so-

called “table-miss” event: an incoming packet does not match

any forwarding rule in switch’s flow table. And it can also

actively program the rule action to invoke the controller. The

reactive model could be leveraged to flexibly build up the

SDN applications, however, its reliance on the exchanging

messages between controller and switches would easily fulfill

the control/data channel with complex applications or large

networks, and even be abused to launch a Denial of Service

(DoS) attacks [29]. The objective of this paper is to ensure

the reactive model at an affordable cost.

Achieving this goal is not trivial. First, though the proactive-

only model completely eliminates the reactive overhead, it

This work is supported by the National Key Research and Development
Program of China (2017YFB0801703), the NSFC (No.61672425, 61702407,
61772412, 61402357), the Microsoft Research Asia Collaborative Research
Program (2016JM6066) and State Grid Corporation of China (DZ71-16-030).

cannot serve all applications that require flexible flow man-

agement (Section II). Second, simple utilization of existing

memory (DRAM, SRAM) in the switches is far from suf-

ficient to handle many simultaneous reactive events, which

would further congest the control/data channel (Section III).

However, while the bandwidth between two planes is in great

demand, the bandwidth in data plane is quite underutilized: the

average link utilization in Internet is lower than 50% and the

utilization in date center seldom exceeds 25% [7]. Based on

this observation, we propose SoftRing resorting to the unused

data plane bandwidth to handle overhead.

Let us draw an analogy to explain the idea. A popular

restaurant also has a “table-miss” problem, which might not

have enough tables to serve every customer on their arrival

during the rush hours. In this case, a waiter would arrange a

waiting list recording the customers’ names. It is fine for the

waiting customers to walk away and come back later checking

the seat availability. Also, the customers might go to another

nearby restaurant that has available tables.

This inspires us that the packets triggering the reactive

events (reactive packets) can also “walk around”: an SDN

switch forwards the reactive packets to a pre-computed

“waiting-loop” path in the data plane instead of having it in

the arriving switch’s buffer or sending to the controller. A

corresponding rule would be later installed to one switch in the

loop, which makes the packet leave the loop and be properly

forwarded/operated.

The design of SoftRing is presented in Section IV fol-

lowed by three sections addressing the main issues related

to SoftRing: a two-stage mechanism generating the waiting-

loop paths in Section V, switch enforcement method to enable

the reactive packets forwarding along the waiting-loop path in

Section VI and the strategies to handle the network dynamics

in Section VII. We implement the SoftRing prototype and

evaluate it in Section VIII. Finally, in Section IX we conclude

the paper.

II. WHY NOT PROACTIVE MODEL ONLY

It is no doubt that the proactive model largely cuts the

overhead between controller and switches but the reactive

model in many scenarios is worth preserving due to the

following limitations with only proactive model.

Limited forwarding memory in switch. An SDN switch

can provide approximately thousands of flow entries, which978-1-5090-6501-1/17/$31.00 c©2017 IEEE

may be enough to install proactively for only possible flow

forwarding. However, such critical constraints on the flow

tables stifle the innovation of SDN, obstructing the deployment

of applications that rely on more flexible or finer-grained flow

management. For example, an ISP can prioritize the traffic of

World-of-Warcraft (WoW) for the subscribed players to pro-

vide better game experience. An SDN solution for this service

requires massive flow rules considering the large population

of WoW players in order to detect the WoW traffic from the

subscribers and then redirect to a prioritized link or network.

In literature, there are two broad ways to fill the large rule

set into small flow tables: aggregating the rules, or predicting

the traffic. The first solution works well for routing prefix

aggregation, while it becomes challenging when tens of fields

are involved in SDN/OpenFlow context [28], or the field values

are scattered randomly, e.g., it is impractical to aggregate

the randomly subscribed WoW players’ IP addresses. The

second method combines the proactive model with a predictive

approach, leveraging a time division multiplexing mechanism

on flow tables. However, the network is hard to predict timely,

and the reliable prediction is only with simple coarse-grained

scenarios, e.g., it is impossible to perfectly predict when the

subscribers will be online and issue the flow rules beforehand.

Things get easy if the reactive model is enabled. Still

consider the above WoW service, the switch is proactively

installed with only one rule which notifies the controller once

detecting the newly incoming WoW traffic. If the traffic is from

a service subscriber, a further rule indicating the corresponding

forwarding path with higher priority will be used to configure

the switch. Since it is not likely to have all players online

simultaneously, the reactive model that only installs rules for

online players, while providing the same service level. For

the un-subscribers, it is easy to use a bloom filter to aggregate

them into a single forwarding rule.

Unawareness of data plane. The proactive-only model as-

sumes that the data plane correctly executes all the policies

from the control plane, which is not the case in the real

network, raising potential reliability issues [28], [19]. For

example, the flow rules can be mistakenly removed due to the

bugs or attacks on both controller and switches, resulting in

the wrong forwarding behaviors in the data plane, e.g., black

hole, loop, etc. In these cases, the switches will continuously

drop packets. Because the controller cannot be aware of such

failures with only proactive model. In other words, though

proactive-only model eliminates the single-point failure on the

controller, it also loses control over the failure on the switches.

To this end, we argue that the reactive model triggering a

packet-in message provides awareness of data plane, bringing

better reliability of the system.

Generally, we believe the reactive model should coexist with

proactive model as a complement, as our objective mentioned

in Section I. The proactive-only model is similar to “refusing

to eat for fear of choking”. And in this paper, we explore

the possibilities to “keep eating while reducing the risk of

choking”.

III. REACTIVE MODEL OVERHEADS

A. When Does Reactive Event Happen?

In the real network, table-miss is the most common cause

triggering a reactive event. The main causes are two-fold: (1)

the flow table size is small, so only a small portion of rules

could be accommodated [16], and (2) the small flows that

contributes only 20% traffic occupies 80% portion of the total,

which means the switch needs to handle more new flows in

unit time [7].

Even worse, the frequency of table-miss events will increase

if the flow table is full, since a replacement method, e.g., the

Least Recently Used (LRU) policy, will potentially raise the

flow table thrashing, bringing more table-miss events. For this

reason, when we say a “new flow” packet triggering a table-

miss event, it does not only mean the first packet of the flow,

e.g., TCP SYN packet, but also possibly a subsequent packet

of the flow missing a match on the flow table due to the

limitation of table capacity. In addition, multiple connections

in HTTP/1.1 also bring several table-miss events before the

establishment of the connections.

Besides the table-miss event that only reacts to the missing

flow entries, operators may actively enable the reactive model

to collect data plane status [12], perform high-level process-

ing [6], and adopt fine-grained flow control as the WoW case,

etc., which has analogy with a CPU interrupt in PC system.

B. Overhead in the Design Space

The reliance on the controller slows down the processing

in the reactive model. The mismatch of the processing speed

requires to move the reactive packets out of the processing

pipeline in switch and buffer them somewhere till the con-

troller replies.

A hardware SDN switch usually consists of a Control
Engine (CE) and a Forwarding Engine (FE). The former

coordinates with the controller and the latter provides line-rate

processing (parsing, matching, metering, etc.) on each packet

by the hardware configurations. Based on this architecture, we

have several design options with off-the-shelf controller and

switches: controller armed with disks and DRAMs has the

largest storage space, CE is usually equipped with a DRAM

and the FE has a fast but small SRAM.

Keep in switch’s FE. To keep pace with the processing speed,

SRAM as the memory for FE is quite small. As shown in

Table I, the buffer size of a typical commercial OpenFlow

switch (OFS) is 4MB-16MB. Let us approximately calculate

the packet rate (Ro) of the new flows filling the buffer by Ro =
M
TP , where M is the buffer size, P is the switch throughput

and T is the time to activate a new rule in switch after the

table-miss event. A recent work showed in [24] that the time

to activate a new rule in switch could be with a median value

of 12ms and an upper bound (90% confidence probability) of

15ms. Let us choose 15 ms for T and the specification of

Pica8 switch for M and P , it overflows the buffer if the new

flow rate exceeds 0.26% of the switch capacity.

2

TABLE I
SPECIFICATION OF COMMERCIAL OFS

Brand Model Port Buffer Control BW
Pica8 AS7712-32X 100GbE*32 16MB 1000Mbps

Brocade ICX7750-26Q 40GbE*26 12.2MB 1000Mbps

Dell Z9100-ON 100GbE*32 16MB 1000Mbps

Huawei CE8860 100GbE*32 16MB N/A

Netgear M5300-52G 48+10GbE*4 4MB 10Gbps

Buffer in switch’s CE. Besides a dedicated FE silicon,

i.e., switching chip or network processor (NP) or Fields

Programmable Gate Array (FPGA), a general-purpose CPU is

adopted as the CE in a switch. The CE acts as a bridge between

the controller and FE, which encapsulates/decapsulates the

messages to/from controller. In general, a DRAM is used as

the CPU’s memory. The size of DRAM could be as large

as several gigabytes. However, the bandwidth of the bus

connecting FE and CE in a switch becomes the bottleneck,

which is usually only 1Gbps (For reference, HP ProCurve

5406zl has only 80Mbps bandwidth [11]).

Send to controller. The controller has enough space to store

the reactive packets and these packets can be sent though FE

directly to bypass the bottleneck bus between FE and CE.

However, all the switches share the single channel connecting

to the controller. The test on HP ProCurve 5406zl shows that

only 17Mb/s bandwidth is available between controller and

switch in [11]. Let us assume a network with 20 switches,

each of which is with 3.2Tbps capacity. Even with a controller

providing a 40Gbps or 4 x10Gbps bandwidth and processing

capacity (almost today’s limit), only in average 0.06% of the

traffic being sent to the control channel would consume all the

control bandwidth.

Combination design: the OpenFlow’s choice. The de facto

SDN South-Bound Interface (SBI), i.e., OpenFlow, utilizes the

combination of the fast memory in FE and the bandwidth

of control/data channel. To be specific, once a reactive event

occurs, the OFS buffers the reactive packet in FE’s memory

like the “keep in switch’s FE” solution, and sends a packet-

in message to the controller, carrying only the first 128Bytes

of that packet, which would be sufficient for controller to

determine the corresponding flow rules in most cases. If

the buffer in FE’s memory overflows, OpenFlow degrades

to the “send packets to controller” solution, embedding the

entire packet into the packet-in message to avoid packet loss.

However, as we demonstrated, the fast memory of FE can be

easily fulfilled and the control channel is not efficient as well.

C. Other Prior Works

Besides the extreme point simply abandoning reactive

model and the straightforward solutions buffering a very

limited number of reactive packets (Section III-B), there are

broadly three kinds of works indirectly handling the overhead.

Firstly, a great number of papers attempted to increase the

processing capacity of controller by utilizing pipeline, con-

currency and cache, which meanwhile supports more reactive

Fig. 1. Basic idea of SoftRing

events [23]. The processing capacity can also be improved

by employing hierarchical or distributed models for multi-

controller [8].

The second way decreases the chances to reactively in-

volve the controller by improving the forwarding efficiency

of switch. For example, DevoFlow [11] delegated some pro-

cessing tasks to switches. FAST [18] empowered switches

to support dynamic actions based on local information. DI-

FANE [26] proposed authoritative switches for installing rules

on the remaining switches.

Thirdly, like treating a cache, effectively decreasing the

table-miss rate lowers the probability to involve controller.

CAB [25] separates the field space into logical buckets, which

are bucked along with all the associated rules. CacheFlow [16]

breaks long dependency chains to cache a number of small

groups of rules holding equivalent semantics.

The proposed SoftRing is a fundamentally different ap-

proach that attempts to decrease the overhead handling each

reactive event, which is complementary to the prior works

improving the processing ability (the 1st category) or reducing

the number of reactive events (the 2nd and the 3rd category).

In the context of optical communication, a long fiber form-

ing a loop path is used as the “buffer” [17], [20], which is not

relevant to the study in this paper.

IV. THE DESIGN OF SOFTRING

We now present the design of SoftRing, which ensures

sufficient available reactive connections between controller

and switches. Its idea is simple: instead of storing the reactive

packets in a single switch or sending to the controller, it keeps

them in the switches along the pre-computed waiting-loop

paths.

For example, in Fig. 1, suppose that a packet from H1 to

H2 raises a reactive event in S1 (1©). With OpenFlow, S1 first

keeps all the reactive packets in its buffer and then forwards

them to controller if buffer overflows. In contrast with Soft-

Ring, S1 sends the first a few bytes of a reactive packet to the

controller (2©), and directly forwards the entire packets to a

pre-computed waiting-loop path, i.e., S1→S2→S3→S1 (3©).

While the packet looping, the controller issues new flow rules

to update corresponding flow tables (S1 and S4 in this case).

And when the rules are successfully installed, the packet will

3

be properly forwarded to H2 next time it backs to S1 through

the path S1→S4→H2 (4©).

This loop-path solution saves the control bandwidth and

avoids the potential buffer overflow by trading off two critical

resources: (1) the bandwidth in the loop path against the

bandwidth in the control channel while waiting for the new

rules, and (2) the fast memories of all switches in the loop

path instead of the one in a single switch.

As we utilize the extant network loop to temporally store a

reactive packet, it does not mean this system will be frangible.

First, the loop routing is controllable because each packet can

eventually leave the loop path. Though in the above case the

reactive packet leaves the loop path where the loop starts, it

is possible for it to stop loop routing at any switch along

the waiting-loop path, depending on the controller. Second,

the bandwidth occupied by SoftRing is controllable as an

independent traffic control queue with limited bandwidth is

set in each output port of waiting-loop paths for loop packets.

The conceptual simplicity of the loop-path idea poses three

significant challenges as below and we will address them in

the following three sections

• How to select waiting-loop paths that ensure reactive

model without undue overhead?

• How to enforce the path configurations in the switches?

• How to handle the network dynamics and adjust the

waiting-loop paths?

V. WAITING-LOOP PATHS GENERATION

In this section, we explore the way to find loops in the

network topology graph to form the waiting-loop paths.

The network topology is denoted as G = (V,E), where

V = {vi|i ∈ N
+, i ≤ |V|} is the set of the vertexes and

E = {ek|k ∈ N
+, k ≤ |E|} is the set of edges (N+ means

positive integer). A loop j ∈ N
+ is a subgraph of G and is

denoted as Gj = (Vj ,Ej) satisfying

Vj = {vj,l} ⊂ V, l = 1, ..., |Vj |, (1)

Ej = {(vj,1, vj,2), ..., (vj,l−1, vj,l), (vj,l, vj,1)} ⊂ E, (2)

where (vj,l−1, vj,l) denotes a link/edge from vj,l−1to vj,l. We

use Iij to indicate whether loop j contains vertex i or not.

Iij =

{
1 vi ∈ Vj

0 otherwise
(3)

The problem we addressed in this section is to solve Iij ,

which guarantees that the loops (specified by Iij) 1) cover

all the switches, 2) minimize the latency, and 3) control the

bandwidth occupation in the data plane. We accomplish the

objective in two steps: collect enough loops from the network

topology as the candidates (Section V-A); and then select a

subset of proper loops to meet the requirements (Section V-B).

A. Seeking for Loop Candidates

In literature, Johnson presented an algorithm to identify all

loops of a directed graph [14]. The basic idea is to first traverse

all the strongly connected components2 in a directed graph,

and then activate Depth First Searching (DFS) to each vertex in

strongly connected components with block/unblock operation.

While this algorithm cannot be directly used in our case,

where the graph is undirected, we borrow the basic idea to

develop our preliminary. The difference is that we perform

DFS on the biconnected components3 instead of strongly

connected components (not existed for undirected graph). It

was demonstrated in [9] that elementary loops are existed in a

biconnected components, which can be obtained using Tarjan’s

algorithm [22]. Notice that it is possible that some vertexes are

not be covered by any extant elementary loop and in this case,

we introduce the concept of virtual loop to cover such vertexes,

which is a simple palindromic path v1 → v2 → ... → v2 → v1.

The time complexity of the above method is as large as

O((n+ e)(c+ 1)), where n, e, c are the number of vertexes,

edges and the elementary loops. We develop the following

pruning methods to accelerate the search and the complete

seeking method is described in Algorithm 1.

Graph partition. A super large and complex network topol-

ogy may lead to an unacceptable computation time of seeking

loops. We use Spectral Method [13] to divide the large

topology into k subgraphs. In our experiments, k is set as the

number of the controllers’ CPU cores, so each subgraph can

perform the proposed Algorithm 1 simultaneously. However,

this operation meanwhile deletes some links in the topology,

which may impact the coverage rate of the waiting-loops. We

use the uncovered vertexes to be root vertex and re-search for

them in the integrated topology.

Loop length control. If the length of a waiting-loop is too

short, the reactive packets would traverse a link in the loop

several times consuming too much bandwidth. But a simple

blind enlargement of the loop length introduces larger extra

delay: the packets keep traveling along the waiting-loop path

even the rules from controller are installed in the switches. To

speed up, there is no need to seek loops of arbitrary length.

The details on how to determine the trade-off will be discussed

in Section V-B and we control the searching of the loops in a

reasonable length range.

Loop scale control. As few waiting-loops can cover all the

switches, we restrict the number of found waiting-loops. We

meet this goal by adding a restrict condition in DFS. Each

vertex is set to root in turn for a round of searching. In each

round, we introduce random shuffle algorithm to remainder

vertexes, which can efficiently increase the loop diversity. And

2Strongly connected component: a subgraph of a directed graph G that
is strongly connected, and no additional edges or vertexes from G can be
included in the subgraph without breaking its property of being strongly
connected. Strongly connected: there is a path in each direction between each
pair of vertexes in a directed graph G.

3Biconnected graph: no articulation points in its vertex set. Articulation
point: a vertex such that the number of connected components in G increases
when removed.

4

Algorithm 1: Loop Seeking

inputs : G = (V,E), LENMIN , LENMAX

output: F - feasible loop set for Loop Selection
1 B ← getBi-connectedSet(G);
2 foreach Bi ∈ B do
3 foreach root ∈ Vertex(Bi) do
4 RandomShuffleVertex(Bi − {root});
5 DFS(root, root, new Stack());

6 Function DFS(vertex v, root, Stack Path) : do
7 foreach w ∈ Bi[v] do
8 if w == root ∧ ‖Path‖+ 1 ≥ LENMIN then
9 F ← F ∪ {Path ∪ v};

10 if found 100 loops then stop DFS ;
11 else if ‖Path‖ < LENMAX then
12 DFS(w, root, Path ∪ v);

we search only k loops in one root. Here is an example for

a rough impression. There are 1,521,072 loops (with different

start vertexes) in a 6-pod FatTree topology. But only 7 of

them are enough to cover all these 45 vertexes. Under the

restrict condition, we search only 100 loops in one root and

our experiments show that the result of our strategy has no

difference with that of full loop searching.

B. Loop Selection Algorithm

In this section, we select waiting-loops (S = {Gj}) from the

output of Algorithm 1 F considering several constraints and

objectives. A primary requirement, as listed in (4), is to secure

all the vertexes (switches) in the topology being covered (with

the help of virtual loops if physical links are not sufficient).

∪Vj = V. (4)

Let T represent the time interval between the switch sending

the packet-in message and the switch being updated the new

flow entries from controller, tij be the delay of switch i to the

next hop in loop j, and Lj be the time traversing the whole

waiting-loop j. Since SoftRing allows packets to traverse the

loop aj ≥ 1 times, the extra delay introduced by SoftRing

can be formulated in (5) and (6), where α is the extra delay

upper bound to be minimized. T and tij can be measured (see

Section VI for details), while the values of aj , Iij are to be

resolved.

0 ≤ ajLj − T ≤ α, (5)

Lj =
∑
i

tijIij . (6)

We use the times that a reactive packet traverses a link i as

an indication of bandwidth cost on the link as shown in (7).

SoftRing puts a cap on the bandwidth used for the waiting-loop

paths using a meter to shape/police the use of the bandwidth

for SoftRing, which will be presented in Section VI.

Ci =
∑
j

ajIij . (7)

Algorithm 2: Loop Selection

inputs : F - feasible loop set from Loop Seeking
V - vertex set of graph G

output: S - selected loop set to cover vertexes
1 S ← Ø, Cover ← Ø;
2 while Cover ! = V do
3 selected ← Ø;
4 foreach loop ∈ F do

5 loop.IE ← ‖{v|v ∈ loop} − Covering‖
‖loop‖ ;

6 if loop.IE > selected.IE then selected ← loop ;
7 else if loop.IE == selected.IE then
8 selected ← argMin(Delayloop, Delayselected);

9 if selected.IE == 0 then break;
10 S ← S ∪ {selected},Cover ← Cover ∪ {v|v ∈ selected};

To enable SoftRing, the waiting-loop paths should be proac-

tively installed in switches. As we will mention later in

Section VI, it requires one more flow entry installed into the

switch for each wait-loop traversing it, i.e., the number of the

extra flow entries Ni can be expressed as,

Ni =
∑
j

Iij . (8)

Considering the Ci and Ni, this problem can be addressed

to a weighted set cover problem, which is NP-hard [15]. We

employ a greedy heuristic algorithm to solve it. The complete

Loop Selection algorithm in illustrated in Algorithm 2, where

Cover represents the vertexes covered by the selected loops,

Increase Effect (IE) represents the effect can be obtained from

adding a new loop to the selected set.

It is easy to prove that there is no other loop set that can

cover more vertexes than the output subset S. The time bound

of Loop Selection algorithm is O(‖F‖ × min(‖F‖, ‖V‖)),
where ‖F‖ is the number of loops found in Algorithm 1 and

‖V‖ is number of vertexes in the topology. As we eliminate

lots of loops by the loop length requirement, Loop Selection

is much faster than Loop Seeking. This greedy algorithm pro-

vides an approximation ratio of O(log(n)), which is optimal

to solve the set cover problem in polynomial time [21].

VI. SWITCH ENFORCEMENT

The enforcement is inherently related to the switch spec-

ifications. Without loss of generality, we only assume that

each switch has flow tables specifying regular matching fields

(e.g., Src/Dst IP Address/Port, VLAN/MPLS), actions (e.g.,
forwarding, to controller, meter), and supporting rule priori-

ties. In other words, the design should at least support off-

the-shelf SDN proposals including OpenFlow, POF, P4, etc.

Especially, we discuss the following design issues related to

enforce the waiting-loop path in switches.

A. How to design flow rules enabling the waiting-loop?

First, a reactive rule with the lowest priority to handle the

packets that need to be further processed by the controller.

The match fields of that rule depend on the kind of reactive

5

TABLE II
FLOW RULE TO IMPLEMENT SOFTRING

Priority Match Action Timeout

ES 0 reactive

Send 128 Bytes to Controller

Push VLAN = 1

Set TTL = β

Send to next switch by queues

0

LS 1

VLAN = 1

in_port =

pre-switch

Decrement TTL

Send to next switch by queues
0

event to be handled, and here we demonstrate the flow rule

construction of the table-miss event in a single switch s. The

reactive rule of table-miss event is with the lowest priority (0)

and matches wildcard (*) on all fields, so a table-miss packet

will hit this rule. The action of this reactive rule consists of the

following operations: (1) send a packet-in message carrying

the first 128 bytes of the packet to the controller, (2) append

a LOOP ID to the VLAN field of the packet as a waiting-

loop ID, which would be removed when leaving the loop, and

(3) forward the packet to the next hop of the pre-computed

waiting-loop. Notice that this reactive rule in s can only be

matched by the reactive packets triggered in s, called entrance
switch (ES) rule. Additional rules with different LOOP ID
on VLAN field will handle the reactive packets triggered by

other switches that traverse s. Such loop switch (LS) rules
have higher priority than the ES rule.

B. Is the enforcement robust with switch/controller malfunc-
tioning?

We append Time To Live (TTL) to the packets in the

waiting-loop as a guarantee to avoid endless loop routing when

errors occur, e.g., the actions from controller are not properly

installed or are just lost. TTL of a packet in the loop path

decreases in each hop and it will be dropped when TTL turns

to be zero. TTL is initialized to a tolerable loop times, denoted

as β, and would be reset when leaving the waiting-loop. As

some Ethernet packets do not have TTL field, we use MPLS

tag to replace VLAN tag for bearing LOOP ID and use

MPLS TTL to avoid endless loop.

C. How many flow table rules are needed in each switch?

A switch traversed by n loops needs n LS flow rules and

one ES rule, which are illustrated in Table II. The Timeout
is set to 0, which means “never be expired”, in order to

permanently keep the reactive rules. Once controller replies

the reactive request, one flow rule is added to handle the

subsequent packets of the flow, as well as a temporal rule to

handle the reactive packets looping in the waiting-loop path.

The temporal rule, which is safe to be timeout shortly (e.g.,
1s∼the shortest timeout if being with OpenFlow), pops the

added VLAN tag, resets the TTL to its former value and

forwards the packets correctly. It is worth noting that these

two newly updated rules are prioritized making the packets not

to trigger the LS/ES rules anymore. Also, it is not necessarily

TABLE III
CONTROLLER-TO-SWITCH MESSAGE IN SOFTRING

Type Priority Match Field Action Timeout

Flow-add > 1
VLAN = None

ip_src ip_dst etc.
Forwarding normal

Flow-add > 1
VLAN = 1

ip_src ip_dst etc.

Pop VLAN

Reset TTL

Forwarding

short

send back the rule to the original switch triggering the reactive

request. In fact, any switch in the loop is capable to be the

egress switch. The trade-off about how to choose considers

the available flow table rules in each switch and the routing

hop length.

D. How many messages are there between controller and
switches?

We compare the messages using OpenFlow and SoftRing.

An OpenFlow controller will send two messages to entrance

switch: a packet-out message with buffer id (to fetch the

reactive packet buffered in switch) or the entire reactive packet

(when buffer overflows); a flow-add message to install flow

rule (rules) on operating the subsequent packets of the flow.

In SoftRing, controller does not send the packet-out message,

which is very likely to be the entire reactive packet. Instead,

one more flow-add message is sent to restore the reactive

packets in the waiting-loop by removing VLAN tag, resetting

TTL and forwarding to the right next hop (Table III). Recall

that the reactive packets are not only SYN but also normal

packets in a TCP flow, this additional flow-add message is

expected to be much smaller than the reactive packet, so as to

reduce the overhead in control/data channel.

E. How much bandwidth would be consumed in the data plane
for the waiting-loop path?

Without any buffer and transmission control in switches

along the waiting-loop path, the bandwidth would be con-

sumed by the reactive packets traversing the loop again and

again. However, by fully utilizing the available memory and

metering/shaping function supported in the switches along

the waiting-loop, we can control the bandwidth consumed.

Especially, the packets traversing the waiting-loop will be

buffered in a dedicated queue under a meter in each switch,

therefore only a specified proportion of the bandwidth in the

meter would be used for the waiting-loop routing.

VII. HANDLING THE DYNAMICS

In this section, we discuss the adjustment of the waiting-

loop paths due to two kinds of network dynamics. First, if a

link becomes heavily loaded or even congested, it should not

be used for the waiting-loop paths. Second, the dynamics of

tij and T have an important impact on deciding loop length,

which is used to accelerate the loop generation progress and to

guide the trade-off between consumed data plane bandwidth

and processing latency.

6

Fig. 2. Dynamic flow control

t1

t2 t3

t4

T=t4-t1

dt12

T=t3-t1-dt12

t1 t2t3

Fig. 3. How to measure the T in SoftRing

A. Traffic Load Dynamics

SoftRing periodically collects the link status (connectivity,

utilization), and the overloaded or failed links will be marked

as the forbidden links. All the loops that cover such links will

be removed from the loop set obtained by Algorithm 1, so as

to avoid the link congestion or black hole along the loop path.

The change of the forbidden links will refine the loop

selection process, while the loop seeking algorithm will be re-

executed only when the topology changes. The experiments

show that the change of forbidden links brings minor time

overhead (<1s), which is fast enough to meet the frequency

of the traffic dynamics.

B. Delay Dynamics

As we mentioned before, the length of the waiting-loop path

should be carefully estimated as one of the input parameters

to the loop seeking algorithm. To estimate the length based on

(5) and (6), we need to monitor the delay dynamics.

For tij , SDN/OpenFlow provides various statistics in the

controller to query the switch’s running status including the

latency dtij between any two switches i and j through the

controller link discover module.

For T , assume that a switch sends packet-in message at t1,

controller receives the packet-in at t2, after generating rule for

the missed packet/flow, the controller sends packet-out at t3,

and the switch receives the packet-out at t4. In this situation,

T = t4 − t1, but recording t1 and t4 requires modifications

on switches. As depicted in Fig. 3(2), we estimate the latency

in this way: a probe packet is sent to trigger the table-miss in

switch S1. Controller receives packet-in from S1 at t1 and send

the packet-out at t2. Then this probe packet is forwarded to

S2 after dt12 and triggers the table-miss in S2, too. Controller

receives the packet-in from S2 at t3. Since we have knowledge

about dt12, the T is equal to t3 − t1 − dt12. In this method,

we only need to record t1 and t3, which are easy to get from

Fig. 4. SoftRing implementation

the system time in controller. The controller can periodically

compute and update the estimated latency and re-execute the

loop seeking algorithm on demand.

Notice that both the dtij and T are not precise in the above

measurement. However, the gap is tolerable and the precision

is enough for SoftRing as indicated in our evaluation.

VIII. IMPLEMENTATION AND EVALUATION

A. Implementation

Fig. 4 depicts the prototype system of SoftRing based

on the techniques we have discussed in previous sections.

In the first stage, a Loop Seeking module computes enough

feasible loops in the topology (Section V-A), and then a Loop
Selection module selects a subset of loops to efficiently cover

all switches (Section V-B). Notice that the traffic is changing

frequently, a Loop Management module is therefore developed

to adjust the selected loops for controlling the load dynamics

(Section VII). In the next phase, a Loop Enforcement module

enforces the waiting-loops in the data plane (Section VI). To

be specific, it can be further separated into a Loop-Path Con-
struction module constructing the loop-paths using real rules

and a Loop Policing module metering the bandwidth utilized in

the data plane. SoftRing leverages only the basic information

from the controller, thus can be implemented as a built-in

component or an individual application. SDN switches with

normal abilities (to controller, meter, forwarding) can support

SoftRing with little modification, as buffering in waiting-loop

action can be separated into those three actions. We have

enforced SoftRing on software SDN switches (Open vSwitch

[4]) and ONetSwitch [3], which is a data plane programmable

SDN hardware switch.

In order to mitigate those control channel overhead, we

implement a flow-add action in ONetSwitch. When the first

packet triggers the ES entry in SoftRing (Section VI), it can

install a new flow entry with higher priority than ES (Flow-

ES). The subsequent packets in this flow will match the Flow-

ES entry and then send to waiting-loop, thus will not send the

same packet-in for this flow. Flow-ES has the shortest timeout,

which will be removed immediately after the controller replies

the reactive request. Such a modification with the hardware

7

TABLE IV
TESTING TOPOLOGY

Type #Switch #Link Type #Switch #Link
BCube(1,4) 24 32 FatTree(4) 20 32
BCube(2,6) 324 648 FatTree(8) 80 256
BCube(3,8) 6,144 16,384 FatTree(32) 1,280 16,384
DCell(1,4) 25 30 Stanford 26 46
DCell(2,6) 2,107 3,612 CERNET 41 59
DCell(2,8) 5,913 10,512 KDL 754 899

CAIDA 10,827 37,734

switch on FE is not applied to the software switch in our

experiment since the FE capacity is weak in software switch.

B. Experiment Settings

Testbed. We use 4 computers and 20 switches (ONetSwitch)

to build two kinds of testbed for evaluation. 4 computers are

numbered as H0, H1, H2 and H3 and are with the same

configuration (4-core 3.4 GHz Intel CPU, 8 GB memory and

Linux kernel 3.13). The first testbed is software switch based.

It is built on Mininet [2] and Open vSwitch 2.3.1 [4] to emulate

the data plane supporting OpenFlow 1.3, where H0 is equipped

with the latest Floodlight controller as well as the SoftRing

function running over the controller and H3 is the host of

Mininet. We have a second hardware-based testbed based on

ONetSwitches [3]. H1 and H2 act as the sender/receiver to

exam the performance of SoftRing on hardware switches. A

dedicated cable (1Gbps) is employed to connect the controller

(H0) and the data plane (ONetSwitches). Each link between

any two switches is also 1Gbps.

Metrics. First, we measure the calculation time and the mem-

ory occupation to obtain the waiting-loop paths. This metric

indicates how effective the proposed algorithms in Section V

are. Next, we quantify the benefit achieved by SoftRing on

mitigating the reactive overhead, i.e., buffer size in switch and

control/data channel bandwidth can be reduced. At last, we

exam the cost to deploy SoftRing including the consumed data

plane bandwidth, the extra latency, as well as the additional

flow table entries used in switches.

C. Efficiency of waiting-loop calculation

Two topology categories are used. One is the Data Center

Networking (DCN) topologies including BCube, DCell, Fat-

Tree [10]. And the other falls in the Internet topology group

obtained from CAIDA [1], Stanford backbone [27], Chinese

Education and Research NETwork (CERNET) and Kentucky

Datalink (KDL) topologies from the Internet topology zoo [5].

See Table IV for details.

The calculation of the waiting-loop is performed on H0 and

Table V illustrates the performance statistics. All the switches

are 100% covered by the extant waiting-loops (virtual loops

are employed to cover all the switches for the last three

topologies in the table). For topologies with less than 100

switches, the proposed algorithms use less than one second and

require less than 10MB memory. On handling larger topolo-

gies, the calculation could be also accomplished in seconds

with quite small memory consumption. The CAIDA topology

TABLE V
WAITING-LOOP GENERATION RESULTS

Type
Time(s) Memory(MB) # Ave

Seek Cover Seek Cover Loop Entries
BCubea(1,4) 0.00 0.00 2.8 2.4 4 2.3
BCube(2,6) 0.81 0.43 3.6 10.5 58 2.4
BCube(3,8) 122 81.3 90.4 329 1077 2.4
DCell(1,4) 0.00 0.00 2.8 4.2 4 2.4
DCell(2,6) 2.02 3.11 10.0 86.9 304 2.3
DCell(2,8) 12.0 32.3 45.6 139 816 2.3
FatTree(4) 0.00 0.01 2.4 2.9 4 2.6
FatTree(8) 0.03 0.01 3.3 7.8 14 2.3
FatTree(32) 6.49 2.89 128 111 208 2.5
Stanford 0.01 0.00 3.7 3.7 5 2.3
Cernet* 0.00 0.00 3.2 3.2 3 2.7
KDL* 0.12 0.02 7.7 24.2 62 3.3
CAIDA* 2,160 84.8 1,026 733 4,097 4.6

*: Virtual loops are used to cover all the switches.

TABLE VI
THE TIME AND FLOW ENTRIES USAGE WHEN USING SEARCH SCALE

CONTROL (SSC)

BCube DCell FatTree FatTree
(3,8) (2,6) (8) (32)

Time
None 1474s 6.06s 230s >1h
SSC 203s 5.13s 0.04s 9.38s

Ave None 2.37 2.28 2.32 N/A
Entries SSC 2.40 2.28 2.32 2.50

is the most time consuming one and the computation on it lasts

for 36 minutes. The computing time is still acceptable since

it can be pre-computed. When we involve dynamic control as

mentioned in Section VII-A only calling the loop selection

algorithm, the adjustment has been completed within about 1

minute for the same CAIDA topology.

In Section V-A, we have introduced many accelerating at-

tempts to the primary loop seeking algorithm. Due to the space

limitation, we show the efficiency of the acceleration from

“Search Scale Control (SSC)” as an instance: the searching

time is significantly reduced while slightly increases the flow

table entries to enforce the waiting-loops. The results are

demonstrated in Table VI. Although the change for DCell is

tiny, the searching improvement on the other three topologies

are huge. In addition, the narrowing the search space has only

a neglectable impact on the average entries needed.

D. Benefit of SoftRing

In either the software switch or the hardware switch testbed,

a full FatTree(4) topology is built with 20 virtual switches

(Open vSwitch) or 20 hardware switches (ONetSwitch).

Since each waiting-loop path works independently after

enforcing the flow table rules, the results collected on a single

loop are representative. It is depicted in Fig. 5 that we test

the communication between H1 and H2 triggering reactive

packets in switch S1. The bold line in Fig. 5 highlights the

waiting-loop tested.

In this evaluation, we do not consider the possible per-

formance degradation due to congestion and only exam the

performance differences between original OpenFlow and Soft-

Ring on processing the reactive model. The related works in

8

Fig. 5. Waiting-Loop and Connection Hosts in FatTree(4)

TABLE VII
REACTIVE PACKET RATE VS. BUFFER OVERFLOW PROBABILITY IN

DEFAULT OPEN VSWITCH

Pkt/s <750 1000 1250 1500 1750 2000 2250 2500

Poverflow 0% 2% 4% 7% 14% 38% 64% 91%

Section III-C do not conflict with SoftRing and can work

together with SoftRing. We aim to check the benefit achieved

by SoftRing alone thus these related works are not involved in

the experiments. Table VII lists the buffer overflow probability

under different reactive packet rates (number of reactive packet

per second). Buffer starts to overflow when the reactive

rate reaches 750 packets per second and the buffer overflow

probability keeps enlarging with the increment of the table-

miss rate. It could be as large as 91% for a rate up to 2500

reactive packets per second.

We have performed a set of experiments to check the con-

trol/data channel bandwidth consumption. First, we generate a

number of reactive flows, each of which has only one packet,

to OpenFlow switch (with and without buffer) and to our soft-

ware/hardware switch testbed. Fig. 6 depicts the control/data

channel bandwidth consumption versus the reactive packet rate

with only one switch. SoftRing needs much less bandwidth on

handling the reactive model since the size of each packet-in

message is 128 Bytes plus the SBI message header (42 Bytes if

employing OpenFlow), while OpenFlow has to send the whole

packet to the control after buffer overflows, which could be

as large as 1500+42 Bytes for each packet-in message. In the

worst case, OpenFlow consumes about 5 times control/data

channel bandwidth as that is required by SoftRing. When

the reactive rate is low, SoftRing occupied very slightly

more bandwidth than OpenFlow because SoftRing’s flow-add

message is a little bit larger than the packet-out message in

500 1000 1500 2000 25000

10

20

30

40

50

60

Reactive Packet Rate (packets/s)

C
on

tro
l/D

at
a

C
ha

nn
el

Ba
nd

w
id

th
 (M

bp
s)

OpenFlow
(No Buffer)
OpenFlow
SoftRing
(sw/hw)

Fig. 6. Control/data channel bandwidth used vs. reactive packet rates. Each
reactive flow has only one packet (1500Bytes).

50

25

50

75

100

125

150

10 20 30 40

C
on

tro
l/D

at
a

C
ha

nn
el

Ba
nd

w
id

th
 (M

bp
s)

OpenFlow
(No Buffer)
OpenFlow
SoftRing(sw)
SoftRing(hw)

Fig. 7. Control/data channel bandwidth consumed vs. the number of packets
in each reactive flow. The total number of the reactive flow generated in one
second is 100.

OpenFlow (Please check Section VI for details). But in that

case, the control/data channel bandwidth is not the bottleneck

and can afford the messages from SoftRing.

In the second experiment related to control/data channel

bandwidth consumption, we modify the injected traffic: we

constantly send 100 reactive flows but change the number

of packets (1500Bytes for the packet size) in each reactive

flow. With the fully programmable data plane of ONetSwitch

as we mentioned before, we enable an action in switch to

modify the flow tables on detecting the first reactive packet. A

Flow-ES entry is appended to the flow table so the subsequent

packets for the reactive flow are no longer sent to controller

but directly forwarded to the waiting-loop. This entry would

be removed later according to the replied flow-mod message

from controller. In this way, control/data channel bandwidth

overhead can be further mitigated with sending only once the

packet-in message to controller for each reactive event. Fig. 7

demonstrates the benefit as we expected: the results achieved

by SoftRing with software switch are similar to the previous

one in Fig. 6, while the SoftRing on the optimized hardware

switch shows a flat curve consuming only 1.7KB/s bandwidth.

OpenFlow Design cannot handle such flows in our testbed, we

just show its speculative value.

E. Cost of SoftRing

With regarding to the extra cost introduced by SoftRing, we

first check how much bandwidth in data plane is reserved for

the waiting-loop path. As discussed in Section VI, SoftRing

shapes a dedicated queue to send the traffic for SoftRing. In

our experiment, the bandwidth used by SoftRing is always less

500 1000 1500 2000 25000

0.5

1

1.5

2

2.5

Reactive Packet Rate (packets/s)

La
te

nc
y

(m
s)

OpenFlow
SoftRing

Fig. 8. Different table-miss packet in flow vs. packet Latency (ms) in Software
Switch

9

than 50Mbps (5%) of the link capacity as the control parameter

we have configured.

To measure the extra latency of SoftRing compared with

OpenFlow, we use the same input traffic in Fig. 6 and SoftRing

implementation with the software switch. The results are

depicted in Fig. 8. We observe that SoftRing does increase

the latency, however the difference is quite small.

Furthermore, Fig. 9 shows the flow table memory used

to build the waiting-loop paths. In the DCN topologies and

Stanford topology, more than 80% switches contain only 2

or 3 extra static flow entries. The use of virtual links needs

more flow table entries like the last three topologies indicated.

But in all the topologies, less than 12% switches are required

to equip more than 5 flow table entries. The average number

of the added flow entries in each experiment with different

topologies is around three.

0

20%

40%

60%

80%

100%

BCub
e(1

,4)

BCub
e(2

,6)

BCub
e(3

,8)

DCell
(1,

4)

DCell
(2,

6)

DCell
(2,

8)

Fatt
ree

(4)

Fatt
ree

(8)

Fatt
ree

(32
)

Stan
for

d

Cern
et

KDL

CAID
A

#Entry = 2
#Entry = 3
#Entry = 4
#Entry = 5
#Entry > 5

Fig. 9. Accumulated number of static flow entries in one switch

IX. CONCLUSION

We advocate the coexistence of proactive model and the

reactive model: the prior should be adopted for the network

issues in expectation; while the latter takes care of the table-

miss event and the active involvement of the controller.

We have proposed SoftRing to handle the overhead: a

reactive packet goes through a pre-computed waiting-loop

path before being correctly operated by the corresponding

rules from controller. SoftRing reduced 5× control channel

bandwidth consumption compared with OpenFlow.

SoftRing is easy to deploy. It only relies on the basic

information from controller and can be a built-in controller

component or an individual application. In addition, SoftRing

has little requirement on the underlying SDN switch. If the

switch could be further optimized for the SoftRing processing,

as we have done with the ONetSwitch in the paper, the

overhead can be further reduced. We believe an even more

powerful programmable data plane device would be soon

available with the coming BareFoot switching chip inside P4

production switch. SoftRing slightly increases the processing

delay of the reactive model, which is a future direction. A

possible way is to combine with the solutions off-loading

controller functions to the switches so the latency on the

reactive packet would be smaller.

REFERENCES

[1] CAIDA. ”http://www.caida.org/home/”.
[2] Mininet. ”http://mininet.org/”.
[3] ONetSwitch30 specification . ”http://onetswitch.org/hardware.html”.

[4] Open vSwitch. ”http://openvswitch.org/”.
[5] The Internet Topology Zoo. ”http://www.topology-zoo.org/”.
[6] White Paper: DPI & Traffic Analysis in Networks Based on

NFV and SDN. ”http://www.qosmos.com/wp-content/uploads/2014/01/
Heavy-Reading Qosmos DPI-SDN-NFV White-Paper Jan2014.pdf”.

[7] BENSON, T., AKELLA, A., AND MALTZ, D. A. Network traffic
characteristics of data centers in the wild. In Proceedings of ACM
SIGCOMM IMC (2010), ACM, pp. 267–280.

[8] BERDE, P., GEROLA, M., HART, J., HIGUCHI, Y., KOBAYASHI, M.,
KOIDE, T., LANTZ, B., O’CONNOR, B., RADOSLAVOV, P., SNOW, W.,
ET AL. ONOS: towards an open, distributed SDN OS. In Proceedings
of HotSDN (2014), ACM, pp. 1–6.

[9] BIRMELÉ, E., FERREIRA, R., GROSSI, R., MARINO, A., PISANTI, N.,
RIZZI, R., AND SACOMOTO, G. Optimal listing of cycles and st-paths
in undirected graphs. In Proceedings of the 24th Annual ACM-SIAM
Symposium on Discrete Algorithms (2013), pp. 1884–1896.

[10] CHEN, K., HU, C., ZHANG, X., ZHENG, K., CHEN, Y., AND VASI-
LAKOS, T. Routing in data centers: Insights and future directions. In
IEEE Network Magazine - Special Issue on Cloud (2011).

[11] CURTIS, A. R., MOGUL, J. C., TOURRILHES, J., YALAGANDULA, P.,
SHARMA, P., AND BANERJEE, S. Devoflow: scaling flow management
for high-performance networks. ACM SIGCOMM Computer Communi-
cation Review 41, 4 (2011), 254–265.

[12] HANDIGOL, N., HELLER, B., JEYAKUMAR, V., MAZIÈRES, D., AND

MCKEOWN, N. I know what your packet did last hop: Using packet
histories to troubleshoot networks. In USENIX NSDI (2014).

[13] HENDRICKSON, B., AND LELAND, R. An improved spectral graph
partitioning algorithm for mapping parallel computations. SIAM Journal
on Scientific Computing 16, 2 (1995), 452–469.

[14] JOHNSON, D. B. Finding all the elementary circuits of a directed graph.
SIAM Journal on Computing 4, 1 (1975), 77–84.

[15] KARP, R. M. Reducibility among combinatorial problems. 1972.
[16] KATTA, N., ALIPOURFARD, O., REXFORD, J., AND WALKER, D.

Cacheflow: Dependency-aware rule-caching for software-defined net-
works. In Proceedings of SOSR (2016).

[17] LANGENHORST, R., EISELT, M., PIEPER, W., GROSSKOPF, G., LUD-
WIG, R., KULLER, L., DIETRICH, E., AND WEBER, H. Fiber loop
optical buffer. Journal of Lightwave Technology 14, 3 (1996), 324–335.

[18] MOSHREF, M., BHARGAVA, A., GUPTA, A., YU, M., AND GOVINDAN,
R. Flow-level state transition as a new switch primitive for sdn. In
Proceedings of HotSDN (2014), ACM, pp. 61–66.

[19] PEREŠÍNI, P., KUŹNIAR, M., AND KOSTIĆ, D. Monocle: Dynamic,
fine-grained data plane monitoring. In Proceedings of CoNEXT 2015
(2015), pp. 32:1–32:13.

[20] SAKAMOTO, T., OKADA, A., MORIWAKI, O., MATSUOKA, M., AND

KIKUCHI, K. Performance analysis of variable optical delay circuit
using highly nonlinear fiber parametric wavelength converters. Journal
of lightwave technology 22, 3 (2004), 874.

[21] SLAVÍK, P. A tight analysis of the greedy algorithm for set cover. In
Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing (1996), ACM, pp. 435–441.

[22] TARJAN, R. Depth-first search and linear graph algorithms. SIAM
journal on computing 1, 2 (1972), 146–160.

[23] VOELLMY, A., WANG, J., YANG, Y. R., FORD, B., AND HUDAK, P.
Maple: simplifying sdn programming using algorithmic policies. ACM
SIGCOMM Computer Communication Review 43, 4 (2013), 87–98.

[24] WEN, X., YANG, B., CHEN, Y., LI, L. E., BU, K., ZHENG, P., YANG,
Y., AND HU, C. RuleTris: Minimizing rule update latency for tcam-
based sdn switches. In IEEE ICDCS (2016), pp. 179–188.

[25] YAN, B., XU, Y., XING, H., XI, K., AND CHAO, H. J. CAB: A
reactive wildcard rule caching system for software-defined networks.
In Proceedings of HotSDN (2014), ACM, pp. 163–168.

[26] YU, M., REXFORD, J., FREEDMAN, M. J., AND WANG, J. Scalable
flow-based networking with difane. ACM SIGCOMM Computer Com-
munication Review 40, 4 (2010), 351–362.

[27] ZENG, H., KAZEMIAN, P., VARGHESE, G., AND MCKEOWN, N. Au-
tomatic test packet generation. In ACM CoNEXT (2012).

[28] ZHANG, P., LI, H., HU, C., HU, L., XIONG, L., WANG, R., AND

ZHANG, Y. Mind the gap: Monitoring the control-data plane consistency
in software defined networks. In ACM CoNEXT (2016).

[29] ZHANG, P., WANG, H., HU, C., AND LIN, C. On denial of service
attacks in software defined networks. IEEE Network 30, 6 (Nov. 2016),
28–33.

10

